这个题目居然可以用线段树写,好震惊,如果不是在线段树专题肯定想不到,但是就算在线段树的专题里面,我也不太会怎么写。

这个题目大意是,给你n m n代表n个点,m代表m条边,然后就是m行,每行两个数字,一个u一个v。

这个意思是u和v不想连,然后问你这个n个点形成了多少个联通块。

思路大概是这样,首先随意枚举一个点,然后直接更新每一个点的值+1,先消除自己的影响,然后对于每一个和它连的点的值都-1

然后查找一个值大于0 的点,再继续循环这个过程,如果找不到了就推出这个循环。

这个复杂度我不太会算。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>
#include <stack>
#include <map>
#include <string>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 4e5 + 10;
int cnt[maxn * 4], maxs[maxn * 4];
int lazy[maxn * 4]; void push_up(int id)
{
if (maxs[id << 1] < maxs[id << 1 | 1]) {
maxs[id] = maxs[id << 1 | 1];
cnt[id] = cnt[id << 1 | 1];
}
else {
maxs[id] = maxs[id << 1];
cnt[id] = cnt[id << 1];
}
// printf("cnt[%d]=%d cnt[%d]=%d\n", id << 1, cnt[id << 1], id << 1 | 1, cnt[id << 1 | 1]);
// printf("cnt[%d]=%d\n", id, cnt[id]);
} void build(int id,int l,int r)
{
lazy[id] = 0;
if(l==r)
{
cnt[id] = l;
maxs[id] = 0;
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
push_up(id);
} void push_down(int id)
{
//printf("id=%d\n", id);
if (lazy[id] == 0) return;
maxs[id << 1] += lazy[id];
maxs[id << 1 | 1] += lazy[id];
lazy[id << 1] += lazy[id];
lazy[id << 1 | 1] += lazy[id];
lazy[id] = 0;
} void update(int id,int l,int r,const int x,const int y,int val)
{
// printf("id=%d l=%d r=%d x=%d y=%d\n", id, l, r, x, y);
if(x<=l&&y>=r)
{
maxs[id] += val;
lazy[id] += val;
return;
}
push_down(id);
int mid = (l + r) >> 1;
if (x <= mid) update(id << 1, l, mid, x, y, val);
if (y > mid) update(id << 1 | 1, mid + 1, r, x, y, val);
push_up(id);
} struct node
{
int v, nxt;
node(int v=0,int nxt=0):v(v),nxt(nxt){}
}ex[maxn];
int head[maxn], tot = 0, num;
void init()
{
memset(head, -1, sizeof(head));
tot = 0, num = 0;
} void add(int u,int v)
{
ex[tot] = node(v, head[u]);
head[u] = tot++;
ex[tot] = node(u, head[v]);
head[v] = tot++;
}
int a[maxn];
bool vis[maxn];
int n, m; int dfs(int x)
{
int res = 0;
build(1, 1, n);
while(1)
{
vis[x] = 1;
res++;
update(1, 1, n, 1, n, 1);
update(1, 1, n, x, x, -inf);
for (int i = head[x]; i != -1; i = ex[i].nxt)
{
int v = ex[i].v;
update(1, 1, n, v, v, -1);
}
// printf("\n\n");
if (maxs[1] <= 0) break;
x = cnt[1];
}
return res;
} int main()
{
init();
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
for(int i=1;i<=n;i++)
{
if (vis[i]) continue;
a[num++] = dfs(i);
}
sort(a, a + num);
printf("%d\n", num);
for (int i = 0; i < num; i++) printf("%d ", a[i]);
return 0;
}

  

线段树 C - Connected Components? CodeForces - 920E的更多相关文章

  1. Connected Components? Codeforces - 920E || 洛谷 P3452 &&bzoj1098 [POI2007]BIU-Offices

    https://codeforces.com/contest/920/problem/E https://www.luogu.org/problemnew/show/P3452 https://www ...

  2. Connected Components? CodeForces - 920E (bfs)

    大意:给定无向图, 求补图的连通块数 bfs模拟即可, 这里用了map存图, set维护未划分的点集, 复杂度$O(nlog^2n)$, 用链表的话可以$O(n)$ #include <iost ...

  3. 线段树+矩阵快速幂 Codeforces Round #373 (Div. 2) E

    http://codeforces.com/contest/719/problem/E 题目大意:给你一串数组a,a[i]表示第i个斐波那契数列,有如下操作 ①对[l,r]区间+一个val ②求出[l ...

  4. 数据结构(线段树):Educational Codeforces Round 6 620E. New Year Tree

    E. New Year Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  5. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  6. 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)

    原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解    By 岩之痕 目录: 一:综述 ...

  7. Codeforces 1270H - Number of Components(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...

  8. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  9. Educational Codeforces Round 6 E. New Year Tree dfs+线段树

    题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...

随机推荐

  1. Python 操作mysql数据库之 SQLAlchemy 案例详解

      前言: 字段声明类型中,最右边的是数据库中对应的字段,我们依然可以使用,其左边的的 SQLAchemy 则是其自身封装的自定义类型. 本篇不会讲太多的理论知识,因为这个实用性更强,所以通篇全部都是 ...

  2. 修改vs默认浏览器

    右键你的Html或者网页项目,选择"使用以下工具浏览" 跳出选择框,选择你想要的浏览器作为默认值即可,也可以添加你想要的浏览器.

  3. Mysql:小主键,大问题

    今日格言:让一切回归原点,回归最初的为什么. 本篇讲解 Mysql 的主键问题,从为什么的角度来了解 Mysql 主键相关的知识,并拓展到主键的生成方案问题.再也不怕被问到 Mysql 时只知道 CR ...

  4. 详解 普通数组 —— Arrays类 与 浅克隆

    我们在C语言中,编一些代码量规模比较大的程序,几乎都会用到 "数组" 或 "链表" ,但是,在本人之前的博文中,却对这两个知识点从未提到过,那么,本人将通过这篇 ...

  5. SQL SERVER 那点事

    温故而知新 一.创建数据库 USE MASTER; GO IF EXISTS(SELECT * FROM sys.databases WHERE [name] = 'student') BEGIN A ...

  6. sublime查看项目代码多少行

    ---------------------sublime   0.右击要查找的文件; 1.勾选正则( .* ); 3.输入正则表达式 ^[ \t]*[^ \t\n\r]+.*$ 0:搜索 \n 是不是 ...

  7. fasttext的使用,预料格式,调用方法

    数据格式:分词后的句子+\t__label__+标签 fasttext_model.py from fasttext import FastText import numpy as np def ge ...

  8. 一不小心实现了RPC

    前言 随着最近关注 cim 项目的人越发增多,导致提的问题以及 Bug 也在增加,在修复问题的过程中难免代码洁癖又上来了. 看着一两年前写的东西总是怀疑这真的是出自自己手里嘛?有些地方实在忍不住了便开 ...

  9. [Abp vNext 入坑分享] - 前言

    一·背景 Abp vnext是 ABP 框架作者所发起一个完全基于 ASP .NET Core框架,截至2020年4月份已经升级到2.5.0版本,根据经验2.0版本以后可以放心的使用在生产环境.类似a ...

  10. http_response_code()和header()

    1.http_response_code — 获取/设置响应的 HTTP 状态码向服务器发送成功状态码:http_response_code(200); 返回值如果提供了response_code,将 ...