这个题目居然可以用线段树写,好震惊,如果不是在线段树专题肯定想不到,但是就算在线段树的专题里面,我也不太会怎么写。

这个题目大意是,给你n m n代表n个点,m代表m条边,然后就是m行,每行两个数字,一个u一个v。

这个意思是u和v不想连,然后问你这个n个点形成了多少个联通块。

思路大概是这样,首先随意枚举一个点,然后直接更新每一个点的值+1,先消除自己的影响,然后对于每一个和它连的点的值都-1

然后查找一个值大于0 的点,再继续循环这个过程,如果找不到了就推出这个循环。

这个复杂度我不太会算。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>
#include <stack>
#include <map>
#include <string>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 4e5 + 10;
int cnt[maxn * 4], maxs[maxn * 4];
int lazy[maxn * 4]; void push_up(int id)
{
if (maxs[id << 1] < maxs[id << 1 | 1]) {
maxs[id] = maxs[id << 1 | 1];
cnt[id] = cnt[id << 1 | 1];
}
else {
maxs[id] = maxs[id << 1];
cnt[id] = cnt[id << 1];
}
// printf("cnt[%d]=%d cnt[%d]=%d\n", id << 1, cnt[id << 1], id << 1 | 1, cnt[id << 1 | 1]);
// printf("cnt[%d]=%d\n", id, cnt[id]);
} void build(int id,int l,int r)
{
lazy[id] = 0;
if(l==r)
{
cnt[id] = l;
maxs[id] = 0;
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
push_up(id);
} void push_down(int id)
{
//printf("id=%d\n", id);
if (lazy[id] == 0) return;
maxs[id << 1] += lazy[id];
maxs[id << 1 | 1] += lazy[id];
lazy[id << 1] += lazy[id];
lazy[id << 1 | 1] += lazy[id];
lazy[id] = 0;
} void update(int id,int l,int r,const int x,const int y,int val)
{
// printf("id=%d l=%d r=%d x=%d y=%d\n", id, l, r, x, y);
if(x<=l&&y>=r)
{
maxs[id] += val;
lazy[id] += val;
return;
}
push_down(id);
int mid = (l + r) >> 1;
if (x <= mid) update(id << 1, l, mid, x, y, val);
if (y > mid) update(id << 1 | 1, mid + 1, r, x, y, val);
push_up(id);
} struct node
{
int v, nxt;
node(int v=0,int nxt=0):v(v),nxt(nxt){}
}ex[maxn];
int head[maxn], tot = 0, num;
void init()
{
memset(head, -1, sizeof(head));
tot = 0, num = 0;
} void add(int u,int v)
{
ex[tot] = node(v, head[u]);
head[u] = tot++;
ex[tot] = node(u, head[v]);
head[v] = tot++;
}
int a[maxn];
bool vis[maxn];
int n, m; int dfs(int x)
{
int res = 0;
build(1, 1, n);
while(1)
{
vis[x] = 1;
res++;
update(1, 1, n, 1, n, 1);
update(1, 1, n, x, x, -inf);
for (int i = head[x]; i != -1; i = ex[i].nxt)
{
int v = ex[i].v;
update(1, 1, n, v, v, -1);
}
// printf("\n\n");
if (maxs[1] <= 0) break;
x = cnt[1];
}
return res;
} int main()
{
init();
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
for(int i=1;i<=n;i++)
{
if (vis[i]) continue;
a[num++] = dfs(i);
}
sort(a, a + num);
printf("%d\n", num);
for (int i = 0; i < num; i++) printf("%d ", a[i]);
return 0;
}

  

线段树 C - Connected Components? CodeForces - 920E的更多相关文章

  1. Connected Components? Codeforces - 920E || 洛谷 P3452 &&bzoj1098 [POI2007]BIU-Offices

    https://codeforces.com/contest/920/problem/E https://www.luogu.org/problemnew/show/P3452 https://www ...

  2. Connected Components? CodeForces - 920E (bfs)

    大意:给定无向图, 求补图的连通块数 bfs模拟即可, 这里用了map存图, set维护未划分的点集, 复杂度$O(nlog^2n)$, 用链表的话可以$O(n)$ #include <iost ...

  3. 线段树+矩阵快速幂 Codeforces Round #373 (Div. 2) E

    http://codeforces.com/contest/719/problem/E 题目大意:给你一串数组a,a[i]表示第i个斐波那契数列,有如下操作 ①对[l,r]区间+一个val ②求出[l ...

  4. 数据结构(线段树):Educational Codeforces Round 6 620E. New Year Tree

    E. New Year Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  5. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  6. 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)

    原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解    By 岩之痕 目录: 一:综述 ...

  7. Codeforces 1270H - Number of Components(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...

  8. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  9. Educational Codeforces Round 6 E. New Year Tree dfs+线段树

    题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...

随机推荐

  1. Docker搭建Nessus pro笔记

    0x01 准备Docker环境 拉取镜像: docker pull ubuntu 创建容器: docker run -p 9922:22 -p 8834:8834 --name nessus -it ...

  2. elasticsearch7.6.2实战(2)-es可视化及分析平台-kibana

    1. 场景描述 elasticsearch部署完成后,es官方提供了可视化.分析及管理平台-kibana,部署下,有需要朋友参考下,不谢! 2. 解决方案 2.1 下载 (1)地址:https://w ...

  3. 多线程高并发编程(4) -- ReentrantReadWriteLock读写锁源码分析

    背景: ReentrantReadWriteLock把锁进行了细化,分为了写锁和读锁,即独占锁和共享锁.独占锁即当前所有线程只有一个可以成功获取到锁对资源进行修改操作,共享锁是可以一起对资源信息进行查 ...

  4. 手把手教Extjs-简单GridField示例讲解二

    使用的Extjs版本为4.2,示例是官方的版本,对里面的语法进行一句一句的学习研究.可以方便他人,又可以提升自己的理解.里面存在的问题,后期会一步一步改进.也欢迎各位指出. /* Extjs具有很庞大 ...

  5. 常用App用户体验找茬

    冯晓云: 哔哩哔哩手机客户端:视频播放只允许横屏全屏:还有长视频的“5分钟诅咒”,遇到网速不好的时候是个大写的悲剧: 必应词典UWP版本:主页新闻链接跳转后,一些页面不支持划词取译,当然本身各个页面也 ...

  6. 3. pkg

    程序打包成可执行文件(.exe) 1.)  npm install -g pkg 2.)  单个文件:pkg entrance.js ( windows: pkg -t win entrance.js ...

  7. IDEA惊天bug:进程已结束,退出代码-1073741819 (0xC0000005)

    由于昨天要写的文章没有写完,于是今天早上我四点半就"自然醒"了,心里面有事,睡觉也不安稳.洗漱完毕后,我打开电脑,正襟危坐,摆出一副要干架的态势,不能再拖了. 要写的文章中涉及到一 ...

  8. HTML+CSS教程(三)marquee滚动效果

    一.marquee 1.marquee标签的属性scrollHeight:获取对象的滚动高度.scrollLeft:设置或获取位于对象左边界和窗口中目前可见内容的最左端之间的距离.scrollTop: ...

  9. python 基础篇 自定义函数

    多态 我们可以看到,Python 不用考虑输入的数据类型,而是将其交给具体的代码去判断执行,同样的一个函数(比如这边的相加函数 my_sum()),可以同时应用在整型.列表.字符串等等的操作中. 在编 ...

  10. js 一维数组,转成嵌套数组

    // 情况一: // 数据源var egs = [ {name_1: 'name_1...'}, {name_2: 'name_4...'}, {name_3: 'name_3...'}, {name ...