BZOJ 1227: [SDOI2009]虔诚的墓主人
1227: [SDOI2009]虔诚的墓主人
Time Limit: 5 Sec Memory Limit: 259 MB
Submit: 1078 Solved: 510
[Submit][Status][Discuss]
Description
小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少
Input
第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。
Output
包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。
Sample Input
13
0 2
0 3
1 2
1 3
2 0
2 1
2 4
2 5
2 6
3 2
3 3
4 3
5 2
2
Sample Output
HINT
图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。
所有数据满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。
注意:”恰好有k颗树“,这里的恰好不是有且只有,而是从>=k的树中恰好选k棵
Source
和前几天的考试题一模一样,然而当时脑子短路没想到,相见恨晚啊……
首先离散化坐标,然后树状数组维护一维上区间方案数和,扫描线统计,巨机智。
#include <bits/stdc++.h>
typedef long long lnt;
const int siz = ;
const lnt mod = 2147483648LL;
struct Pair {
int x, y;
inline friend bool operator <
(const Pair &a, const Pair &b) {
if (a.y == b.y)
return a.x < b.x;
else
return a.y < b.y;
}
}t[siz];
int n, m, map[siz], tot, X[siz], Y[siz], now[siz];
lnt tr[siz], c[siz][], ans;
inline lnt ask(int p) {
lnt ret = ;
for (; p; p -= p&-p)
(ret += tr[p]) %= mod;
return ret;
}
inline void add(int p, lnt v) {
if (v >= mod)v %= mod;
for (; p <= tot; p += p&-p)
(tr[p] += v) %= mod;
}
signed main(void) {
scanf("%*d%*d%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d", &t[i].x, &t[i].y);
scanf("%d", &m);
for (int i = ; i < n; ++i)
map[tot++] = t[i].x, map[tot++] = t[i].y;
std::sort(t, t + n);
std::sort(map, map + tot);
tot = std::unique(map, map + tot) - map;
for (int i = ; i <= n; ++i) {
c[i][] = c[i][i] = ;
for (int j = ; j < i && j <= m; ++j)
c[i][j] = (c[i - ][j] + c[i - ][j - ]) % mod;
}
for (int i = ; i < n; ++i)
++X[std::lower_bound(map, map + tot, t[i].x) - map + ],
++Y[std::lower_bound(map, map + tot, t[i].y) - map + ];
for (int i = , cnt, p; i < n; ++i) {
if (i && t[i].y == t[i - ].y) {
++cnt;
lnt a = ask(std::lower_bound(map, map + tot, t[i].x) - map);
lnt b = ask(std::lower_bound(map, map + tot, t[i - ].x) - map + );
lnt d = c[cnt][m] * c[Y[std::lower_bound(map, map + tot, t[i].y) - map + ] - cnt][m];
ans += d * (a - b);
} else cnt = ;
p = std::lower_bound(map, map + tot, t[i].x) - map + ;
add(p, -c[now[p]][m] * c[X[p] - now[p]][m]); ++now[p];
add(p, +c[now[p]][m] * c[X[p] - now[p]][m]);
}
printf("%lld\n", ((ans % mod) + mod) % mod);
}
@Author: YouSiki
BZOJ 1227: [SDOI2009]虔诚的墓主人的更多相关文章
- Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 895 Solved: 422[Submit][Statu ...
- BZOJ 1227 [SDOI2009]虔诚的墓主人 - 扫描线
Solution 离散化 扫描线, 并用 $rest[i]$ 和 $cnt[i]$ 记录 第$i$列 总共有 $cnt[i]$棵常青树, 还有$rest[i]$ 没有被扫描到. 那么 第$i$ 列的方 ...
- 【以前的空间】bzoj 1227 [SDOI2009]虔诚的墓主人
题解:hzw大神的博客说的很清楚嘛 http://hzwer.com/1941.html 朴素的做法就是每个点如果它不是墓地那么就可形成十字架的数量就是这个c(点左边的树的数量,k)*c(点右边的树的 ...
- 1227: [SDOI2009]虔诚的墓主人
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 1083 Solved: 514[Submit][Stat ...
- bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 803 Solved: 372[Submit][Statu ...
- [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 1433 Solved: 672[Submit][Stat ...
- 【BZOJ1227】[SDOI2009]虔诚的墓主人(线段树)
[BZOJ1227][SDOI2009]虔诚的墓主人(线段树) 题面 BZOJ 洛谷 题解 显然发现答案就是对于每一个空位置,考虑上下左右各有多少棵树,然后就是这四个方向上树的数量中选\(K\)棵出来 ...
- bzoj1227 P2154 [SDOI2009]虔诚的墓主人
P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...
- BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*
BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...
随机推荐
- spider 配置文件参考
spider有一个配置文件spider.xml,为xml格式,spider.xml采用DTD进行管理,用于管理spider的所有特性.路由.高可用等. 配置文件支持三种不同的方式进行指定: 1. 通过 ...
- js操作table表格导出数据到excel方法
js导出excel资料很少,网上也找了很多,基本都不能用,要么只能是IE用,还必须要权限,这是非常不好的.后来到github上找到table2excel.js,虽然可以用,但仍然对IE支持不够,也算不 ...
- Threejs中的材质贴图
最近项目需要折腾three.js,有关three.js几点说明 1.作用 threejs适合创建简单的模型视图 2.对于复杂的模型图(如:室内模型图)需要美术3D制作,前端导成特定格式文件(如*.mt ...
- 传统软件和SaaS,差异究竟在哪里
这篇文章从创业起步阶段.产品形态和产品策略.市场竞争格局三个方面比较了中美 SaaS 领域的异同,在文章的最后,作者根据自己在 Box 的工作经历对在国内做 SaaS 的公司提出了四点建议. 我曾有幸 ...
- Android Weekly Notes Issue #230
Android Weekly Notes Issue #230 November 6th, 2016 Android Weekly Issue #230. Android Weekly笔记, 本期内容 ...
- iOS中NSLog输出格式大全
iOS开发中的输出格式大全: %@ 对象 %d, %i 整数%u 无符整形%f ...
- mac,/usr/local is not writable 解决方法
mac,/usr/local is not writable 解决方法 mac 问题 今天在mac上装mongodb,发现提示权限不足问题,错误提示如下: mac安装mongodb错误提示.jpg 尝 ...
- AEAI CRM_v1.5.2升级说明,开源客户关系管理系统
1.升级说明 本次AEAI CRM升级内容主要是针对数通畅联推出AEAI ECP企业云联平台而升级的,其中对AEAI CRM的各模块进行扩展,同时增加了移动门户版功能及为AEAI ECP提供数据服务接 ...
- Linux:常用命令
文件压缩.解压 网络.进程 磁盘.文件使用情况 内存使用 1.文件压缩.解压 1)tar.gz文件解压: .bin.tar.gz 解压到指定目录: (指定的目录是存在的) .bin. 2)zip 文件 ...
- jquery的几个常用方法
第一部份关键词: .bind() .unbind() .css() .hasclass() .removeclass .parent() .children() .html() .hide() .sh ...