1227: [SDOI2009]虔诚的墓主人

Time Limit: 5 Sec  Memory Limit: 259 MB
Submit: 1078  Solved: 510
[Submit][Status][Discuss]

Description

小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少

Input

第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。

Output

包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。

Sample Input

5 6
13
0 2
0 3
1 2
1 3
2 0
2 1
2 4
2 5
2 6
3 2
3 3
4 3
5 2
2

Sample Output

6

HINT

图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。

所有数据满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。

注意:”恰好有k颗树“,这里的恰好不是有且只有,而是从>=k的树中恰好选k棵

Source

 

[Submit][Status][Discuss]

和前几天的考试题一模一样,然而当时脑子短路没想到,相见恨晚啊……

首先离散化坐标,然后树状数组维护一维上区间方案数和,扫描线统计,巨机智。

 #include <bits/stdc++.h>
typedef long long lnt;
const int siz = ;
const lnt mod = 2147483648LL;
struct Pair {
int x, y;
inline friend bool operator <
(const Pair &a, const Pair &b) {
if (a.y == b.y)
return a.x < b.x;
else
return a.y < b.y;
}
}t[siz];
int n, m, map[siz], tot, X[siz], Y[siz], now[siz];
lnt tr[siz], c[siz][], ans;
inline lnt ask(int p) {
lnt ret = ;
for (; p; p -= p&-p)
(ret += tr[p]) %= mod;
return ret;
}
inline void add(int p, lnt v) {
if (v >= mod)v %= mod;
for (; p <= tot; p += p&-p)
(tr[p] += v) %= mod;
}
signed main(void) {
scanf("%*d%*d%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d", &t[i].x, &t[i].y);
scanf("%d", &m);
for (int i = ; i < n; ++i)
map[tot++] = t[i].x, map[tot++] = t[i].y;
std::sort(t, t + n);
std::sort(map, map + tot);
tot = std::unique(map, map + tot) - map;
for (int i = ; i <= n; ++i) {
c[i][] = c[i][i] = ;
for (int j = ; j < i && j <= m; ++j)
c[i][j] = (c[i - ][j] + c[i - ][j - ]) % mod;
}
for (int i = ; i < n; ++i)
++X[std::lower_bound(map, map + tot, t[i].x) - map + ],
++Y[std::lower_bound(map, map + tot, t[i].y) - map + ];
for (int i = , cnt, p; i < n; ++i) {
if (i && t[i].y == t[i - ].y) {
++cnt;
lnt a = ask(std::lower_bound(map, map + tot, t[i].x) - map);
lnt b = ask(std::lower_bound(map, map + tot, t[i - ].x) - map + );
lnt d = c[cnt][m] * c[Y[std::lower_bound(map, map + tot, t[i].y) - map + ] - cnt][m];
ans += d * (a - b);
} else cnt = ;
p = std::lower_bound(map, map + tot, t[i].x) - map + ;
add(p, -c[now[p]][m] * c[X[p] - now[p]][m]); ++now[p];
add(p, +c[now[p]][m] * c[X[p] - now[p]][m]);
}
printf("%lld\n", ((ans % mod) + mod) % mod);
}

@Author: YouSiki

BZOJ 1227: [SDOI2009]虔诚的墓主人的更多相关文章

  1. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  2. BZOJ 1227 [SDOI2009]虔诚的墓主人 - 扫描线

    Solution 离散化 扫描线, 并用 $rest[i]$ 和 $cnt[i]$ 记录 第$i$列 总共有 $cnt[i]$棵常青树, 还有$rest[i]$ 没有被扫描到. 那么 第$i$ 列的方 ...

  3. 【以前的空间】bzoj 1227 [SDOI2009]虔诚的墓主人

    题解:hzw大神的博客说的很清楚嘛 http://hzwer.com/1941.html 朴素的做法就是每个点如果它不是墓地那么就可形成十字架的数量就是这个c(点左边的树的数量,k)*c(点右边的树的 ...

  4. 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1083  Solved: 514[Submit][Stat ...

  5. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  6. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  7. 【BZOJ1227】[SDOI2009]虔诚的墓主人(线段树)

    [BZOJ1227][SDOI2009]虔诚的墓主人(线段树) 题面 BZOJ 洛谷 题解 显然发现答案就是对于每一个空位置,考虑上下左右各有多少棵树,然后就是这四个方向上树的数量中选\(K\)棵出来 ...

  8. bzoj1227 P2154 [SDOI2009]虔诚的墓主人

    P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...

  9. BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*

    BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...

随机推荐

  1. 《连载 | 物联网框架ServerSuperIO教程》- 12.服务接口的开发,以及与云端双向交互

    1.C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍 <连载 | 物联网框架ServerSuperIO教程>1.4种通讯模式机制. <连载 | 物联网框架Serve ...

  2. 每天一个设计模式-4 单例模式(Singleton)

    每天一个设计模式-4 单例模式(Singleton) 1.实际生活的例子 有一天,你的自行车的某个螺丝钉松了,修车铺离你家比较远,而附近的五金店有卖扳手:因此,你决定去五金店买一个扳手,自己把螺丝钉固 ...

  3. Atitit.eclise的ide特性-------abt 编译

    Atitit.eclise的ide特性-------abt 编译 为什么要在Intellij IDEA中使用Eclipse编译器 如果你使用Intellij Idea,你应该考虑使用Eclipse编译 ...

  4. 在Thinkphp中使用AJAX实现无刷新分页

    在Thinkphp目录的Lib\ORG\Util\目录里新建AjaxPage.class.php,写入一下内容: <?php // +------------------------------ ...

  5. javascript 类型转换。

    学校js感觉好漫长,断断续续,要坚持每天都能学到点,总结了下数据类型的转换. Javascript的变量是松散类型的,它可以存储Javascript支持的任何数据类型,其变量的类型可以在运行时被动态改 ...

  6. [Android]Android MVP&依赖注入&单元测试

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/5422443.html Android MVP&依赖注入 ...

  7. Markdown学习

    1. Markdown介绍 Markdown是一种轻量级的标记语言,它语法简单并且易读易用.Mardown文件通常以.md后缀结尾. 2. Markdown优点 纯文本格式,兼容性极强,可以用任意文本 ...

  8. ReactNative中iOS和Android的style分开设置教程

    reactnative可以编辑iOS程序也可以编辑Android程序, 而且80%的代码都可以重用. 及有些文件是两个系统通用的, 相信大家也都清楚了. 但是也许大家会遇到一些屏幕布局的问题, 最常遇 ...

  9. TextField和TextView的限制输入长度

    TextField的限制代理方法 只需要在这个代理方法里面code这样的代码就可以了 16 是长度可以自己设置 - (BOOL)textField:(UITextField *)textField s ...

  10. Android 手机卫士--参照文档编写选择器

    本文来实现<Android 手机卫士--导航界面1的布局编写>中的图片选择器部分的代码. 本文地址:http://www.cnblogs.com/wuyudong/p/5944356.ht ...