1227: [SDOI2009]虔诚的墓主人

Time Limit: 5 Sec  Memory Limit: 259 MB
Submit: 1078  Solved: 510
[Submit][Status][Discuss]

Description

小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少

Input

第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。

Output

包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。

Sample Input

5 6
13
0 2
0 3
1 2
1 3
2 0
2 1
2 4
2 5
2 6
3 2
3 3
4 3
5 2
2

Sample Output

6

HINT

图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。

所有数据满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。

注意:”恰好有k颗树“,这里的恰好不是有且只有,而是从>=k的树中恰好选k棵

Source

 

[Submit][Status][Discuss]

和前几天的考试题一模一样,然而当时脑子短路没想到,相见恨晚啊……

首先离散化坐标,然后树状数组维护一维上区间方案数和,扫描线统计,巨机智。

 #include <bits/stdc++.h>
typedef long long lnt;
const int siz = ;
const lnt mod = 2147483648LL;
struct Pair {
int x, y;
inline friend bool operator <
(const Pair &a, const Pair &b) {
if (a.y == b.y)
return a.x < b.x;
else
return a.y < b.y;
}
}t[siz];
int n, m, map[siz], tot, X[siz], Y[siz], now[siz];
lnt tr[siz], c[siz][], ans;
inline lnt ask(int p) {
lnt ret = ;
for (; p; p -= p&-p)
(ret += tr[p]) %= mod;
return ret;
}
inline void add(int p, lnt v) {
if (v >= mod)v %= mod;
for (; p <= tot; p += p&-p)
(tr[p] += v) %= mod;
}
signed main(void) {
scanf("%*d%*d%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d", &t[i].x, &t[i].y);
scanf("%d", &m);
for (int i = ; i < n; ++i)
map[tot++] = t[i].x, map[tot++] = t[i].y;
std::sort(t, t + n);
std::sort(map, map + tot);
tot = std::unique(map, map + tot) - map;
for (int i = ; i <= n; ++i) {
c[i][] = c[i][i] = ;
for (int j = ; j < i && j <= m; ++j)
c[i][j] = (c[i - ][j] + c[i - ][j - ]) % mod;
}
for (int i = ; i < n; ++i)
++X[std::lower_bound(map, map + tot, t[i].x) - map + ],
++Y[std::lower_bound(map, map + tot, t[i].y) - map + ];
for (int i = , cnt, p; i < n; ++i) {
if (i && t[i].y == t[i - ].y) {
++cnt;
lnt a = ask(std::lower_bound(map, map + tot, t[i].x) - map);
lnt b = ask(std::lower_bound(map, map + tot, t[i - ].x) - map + );
lnt d = c[cnt][m] * c[Y[std::lower_bound(map, map + tot, t[i].y) - map + ] - cnt][m];
ans += d * (a - b);
} else cnt = ;
p = std::lower_bound(map, map + tot, t[i].x) - map + ;
add(p, -c[now[p]][m] * c[X[p] - now[p]][m]); ++now[p];
add(p, +c[now[p]][m] * c[X[p] - now[p]][m]);
}
printf("%lld\n", ((ans % mod) + mod) % mod);
}

@Author: YouSiki

BZOJ 1227: [SDOI2009]虔诚的墓主人的更多相关文章

  1. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  2. BZOJ 1227 [SDOI2009]虔诚的墓主人 - 扫描线

    Solution 离散化 扫描线, 并用 $rest[i]$ 和 $cnt[i]$ 记录 第$i$列 总共有 $cnt[i]$棵常青树, 还有$rest[i]$ 没有被扫描到. 那么 第$i$ 列的方 ...

  3. 【以前的空间】bzoj 1227 [SDOI2009]虔诚的墓主人

    题解:hzw大神的博客说的很清楚嘛 http://hzwer.com/1941.html 朴素的做法就是每个点如果它不是墓地那么就可形成十字架的数量就是这个c(点左边的树的数量,k)*c(点右边的树的 ...

  4. 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1083  Solved: 514[Submit][Stat ...

  5. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  6. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  7. 【BZOJ1227】[SDOI2009]虔诚的墓主人(线段树)

    [BZOJ1227][SDOI2009]虔诚的墓主人(线段树) 题面 BZOJ 洛谷 题解 显然发现答案就是对于每一个空位置,考虑上下左右各有多少棵树,然后就是这四个方向上树的数量中选\(K\)棵出来 ...

  8. bzoj1227 P2154 [SDOI2009]虔诚的墓主人

    P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...

  9. BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*

    BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...

随机推荐

  1. 时隔两个月再写的Echarts(Enterprise Charts,商业级数据图表)一文

    简介 ECharts,缩写来自Enterprise Charts,商业级数据图表,一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE6/7/8/9/10 ...

  2. 移除HTML5 input在type="number"时的上下小箭头

    /*移除HTML5 input在type="number"时的上下小箭头*/ input::-webkit-outer-spin-button, input::-webkit-in ...

  3. jQuery flickity 滑动触屏

    flickity是一款自适应手机触屏滑动插件,它的API参数很丰富,包括对齐方式.循环滚动.自动播放.是否支持拖动.是否开启分页.是否自适应窗口等. 在线实例 实例演示 使用方法 <div cl ...

  4. SharePoint2016合规性策略中心

    如何开启 1. 打开sp2016的管理中心,找到[应用程序]-[创建网站集],如下图: 创建完毕后,如下图: 2. 开启搜索服务并进行爬网,否则进行网站集配置的,无法搜索到网站集 打开管理中心的[管理 ...

  5. 函数式Android编程(II):Kotlin语言的集合操作

    原文标题:Functional Android (II): Collection operations in Kotlin 原文链接:http://antonioleiva.com/collectio ...

  6. Android Weekly Notes Issue #227

    Android Weekly Issue #227 October 16th, 2016 Android Weekly Issue #227. 本期内容包括: Google的Mobile Vision ...

  7. Linux下安装 Posgresql 并设置基本参数

    在Linux下安装Postgresql有二进制格式安装和源码安装两种安装方式,这里用的是二进制格式安装.各个版本的Linux都内置了Postgresql,所以可直接通过命令行安装便可.本文用的是Cen ...

  8. Android学习--自己在使用HttpConnection时遇到的EOFException

    在学习第一行代码第14章酷欧天气的时候,HttpUtil类中的sendHttpRequest方法发出请求,然后返回响应信息,但是出现了EOFException异常,代码如下: HttpURLConne ...

  9. Python测试函数的方法之一

    Python测试函数的方法之一 首先介绍简单的try......except尝试运行的放例如下面的图和代码来简单介绍下: 注释:提醒以下代码环境为2.7.x 请3.x以上的同学们老规矩print(把打 ...

  10. Linux下如何遍历指定目录下的所有文件并删除指定天数之前创建的文件

    脚本内容如下: #!/bin/bash function delete_file { days=$[$-] for i in `find $dir -type f -ctime +$days` do ...