spark Streaming的入门

   1.概述

     spark streaming 是spark core api的一个扩展,可实现实时数据的可扩展,高吞吐量,容错流处理。

     从上图可以看出,数据可以有很多来源,如kafka,flume,Twitter,HDFS/S3,Kinesis用的比较少;这些采集回来的数据可以使用以高级的函数(map,reduce等)表达的复杂算法进行处理,经过sparkstreaming框架处理后的数据可以推送到文件系统,数据板或是实时仪表板上;除此之外,我们还可以在数据流上应用spark的机器学习算法和图像处理算法。

    spark streaming简单的个人定义:将不同数据源的数据经过spark Streaming框架处理之后将结果输出到外部文件系统。

    特点:

      低延迟

      能从错误中高效的恢复:fault-tolerant

      能够运行在成百上千的节点上

      能将批处理、机器学习、图计算等子框架和spark streaming综合起来使用

   2.应用场景:

     实时反映电子设备实时监测

     交易过程中实时的金融欺诈

     电商行业的推荐信息

   3.集成spark生态系统的使用

     

     spark SQL、spark streaming、MLlib和GraphX都是基于spark core的扩展和开发,那它们是如何进行交互的?(后期补充)

  4.spark的发展史

    

      

   5.从词频统计功能着手Spark Streaming入门

    • spark-submit执行(开发)

      package org.apache.spark.examples.streaming
      
      import org.apache.spark.SparkConf
      import org.apache.spark.storage.StorageLevel
      import org.apache.spark.streaming.{Seconds, StreamingContext} /**
      * Counts words in UTF8 encoded, '\n' delimited text received from the network every second.
      *
      * Usage: NetworkWordCount <hostname> <port>
      * <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
      *
      * To run this on your local machine, you need to first run a Netcat server
      * `$ nc -lk 9999`
      * and then run the example
      * `$ bin/run-example org.apache.spark.examples.streaming.NetworkWordCount localhost 9999`
      */
      object NetworkWordCount {
      def main(args: Array[String]) {
      if (args.length < ) {
      System.err.println("Usage: NetworkWordCount <hostname> <port>")
      System.exit()
      } StreamingExamples.setStreamingLogLevels() // Create the context with a 1 second batch size
      val sparkConf = new SparkConf().setAppName("NetworkWordCount")
      val ssc = new StreamingContext(sparkConf, Seconds()) // Create a socket stream on target ip:port and count the
      // words in input stream of \n delimited text (eg. generated by 'nc')
      // Note that no duplication in storage level only for running locally.
      // Replication necessary in distributed scenario for fault tolerance.
      val lines = ssc.socketTextStream(args(), args().toInt, StorageLevel.MEMORY_AND_DISK_SER)
      val words = lines.flatMap(_.split(" "))
      val wordCounts = words.map(x => (x, )).reduceByKey(_ + _)
      wordCounts.print()
      ssc.start()
      ssc.awaitTermination()
      }
      } 使用spark-submit方式提交的命令如下(不懂看代码前面的解析):
      ./spark-submit --master local[] --class org.apache.spark.examples.streaming.NetworkWordCount --name NetworkWordCount /home/hadoop/app/spark/eaxmple/jars/spark-example_2.-2.2..jar hadoop0000
    • spark-shell执行(测试)
      val ssc = new StreamingContext(sparkConf, Seconds())
      val lines = ssc.socketTextStream("hadoop000", )
      val words = lines.flatMap(_.split(" "))
      val wordCounts = words.map(x => (x, )).reduceByKey(_ + _)
      wordCounts.print()
      ssc.start()
      ssc.awaitTermination()

      只需要运行./spark-shell --master loacal[2],之后直接把代码拷贝上去运行即可。

   6.工作原理

     粗粒度:spark streaming接受实时数据流,把数据按照指定的时间段切成一片片小的数据块(spark streaming把每个小的数据块当成RDD来处理),然后把这些数据块传给Spark Engine处理,处理完之后的结果也是分批次的返回。

        

       细粒度:application中有两个context,SparkContext和StreamingContext,使用receiver来接收数据。run receivers as taskes去executor上请求数据,当executor接收到数据后会将数据按时间段进行切分并存放在内存中,如设置了多副本将会拷贝到其他的Exceutor上进行数据的备份(replicate blocks), exceutor的receiver会将blocks的信息告诉StreamingContext, 每到指定的周期 StreamingContext 将会通知SparkContext启动jobs并把这些jobs分发到exceutor上执行。

学习笔记:spark Streaming的入门的更多相关文章

  1. Spark学习笔记——Spark Streaming

    许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用, 还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户 ...

  2. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  3. jQuery学习笔记 - 基础知识扫盲入门篇

    jQuery学习笔记 - 基础知识扫盲入门篇 2013-06-16 18:42 by 全新时代, 11 阅读, 0 评论, 收藏, 编辑 1.为什么要使用jQuery? 提供了强大的功能函数解决浏览器 ...

  4. Oracle RAC学习笔记:基本概念及入门

    Oracle RAC学习笔记:基本概念及入门 2010年04月19日 10:39 来源:书童的博客 作者:书童 编辑:晓熊 [技术开发 技术文章]    oracle 10g real applica ...

  5. Linux内核学习笔记-1.简介和入门

    原创文章,转载请注明:Linux内核学习笔记-1.简介和入门 By Lucio.Yang 部分内容来自:Linux Kernel Development(Third Edition),Robert L ...

  6. 【转载】【时序约束学习笔记1】Vivado入门与提高--第12讲 时序分析中的基本概念和术语

    时序分析中的基本概念和术语 Basic concept and Terminology of Timing Analysis 原文标题及网址: [时序约束学习笔记1]Vivado入门与提高--第12讲 ...

  7. 卷积神经网络(CNN)学习笔记1:基础入门

    卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Vie ...

  8. Spark学习之Spark Streaming(9)

    Spark学习之Spark Streaming(9) 1. Spark Streaming允许用户使用一套和批处理非常接近的API来编写流式计算应用,这就可以大量重用批处理应用的技术甚至代码. 2. ...

  9. Java IO学习笔记八:Netty入门

    作者:Grey 原文地址:Java IO学习笔记八:Netty入门 多路复用多线程方式还是有点麻烦,Netty帮我们做了封装,大大简化了编码的复杂度,接下来熟悉一下netty的基本使用. Netty+ ...

随机推荐

  1. php session 保存到redis 实现session的共享

    1.redis安装肯定都会了,就不介绍了. 2.核心代码

  2. 数据仓库之Data Vault模型总结

    一,Data Vault模型有几个主要的组件,这里先总结一下: 1.Hub组件,是一个数据表,用于记录在业务应用中常用到的业务实体键值,如员工ID,发票号.客户编号.车辆号等. 表内包括几个关键字段: ...

  3. Tsinghua 2018 DSA PA3简要题解

    CST2018 3-1-1 Sum (15%) 简单的线段树,单点修改,区间求和. 很简单. CST2018 3-1-2 Max (20%) 高级的线段树. 维护区间最大和,区间和,左边最大和,右边最 ...

  4. mysql源码版安装

    mysql源码版安装 创建配置文件 创建 my.ini,注意修改,如下的 设置mysql的安装目录和设置mysql数据库的数据的存放目录,设置自己本机的上的对应路径 [mysql] # 设置mysql ...

  5. mvc route .html 后缀 404

    <system.webServer>    <validation validateIntegratedModeConfiguration="false" /&g ...

  6. R语言数值积分

    前两天对学习了R里面计算的基本范围,以及一些求解方程的方法,今天来看看积分,其实上个学期学了数值分析,对这部分的算法是有所了解的,当时是用matlab写了一遍,已经忘了怎么实现的了,现在用R重新写一遍 ...

  7. 小飞侠带你精通Python网络编程系列03-Python版本的选择

    1. 目前Python有两个主要版本Python2.X和Python3.X 2. Python2.X最后一个版本是2.7,目前(2018年10月21日)Python3.X最新版本为3.7 3. 很不幸 ...

  8. 重新复习~ 为了重新找工作 - > XMLHttpRequest2.0 Jsonp nodeType 节点 webpack基本搭建 闭包的一句话总结

    XMLHttpRequest2.0 1.可以设置超时 (xhr.timeout = 1000; ontimeout()函数) 2.支持FormData对象管理表单数据(new FormData 方法: ...

  9. [SCOI2003]字符串折叠

    一道蛮好玩的区间DP...其实只要做好check...然后统计答案就好了...QAQ... 呆码: #include<iostream> #include<cstdio> #i ...

  10. 什么是 Message Queue

    Message Queue 是一种非同步的从一个服务到另一个服务的交流形式, 被用于无服务器架构和微服务架构中. Messages 被储存在一个队列中直到被处理了或被删除. 每个Messages只会被 ...