之前写过一篇简单的介绍mmap()/munmap()的文章《Linux内存管理 (9)mmap》,比较单薄,这里详细的梳理一下。

从常用的使用者角度介绍两个函数的使用;然后重点是分析内核的实现流程;最后对mmap()/munmap()进行一些验证测试。

mmap系统调用并不完全是为了共享内存而设计的,它本身提供了不同于一般对普通文件的访问方式,进程可以像读写内存一样对普通文件操作。

mmap系统调用使得进程之间通过映射同一个普通文件实现共享内存。普通文件被映射到进程地址空间后,进程可以像访问普通内存一样对文件进行访问,不必再调用read()/write()等操作。

mmap并不分配空间,只是将文件映射到调用进程的地址空间里(占用虚拟地址空间),然后就可以使用memcpy()等操作,内存中内容并不立即更行到文件中,而是有一段时间的延迟,可以使用msync()显式同步。

取消内存映射通过munmap()。

下面这张图示意了mmap的内存映射,起始地址是返回的addr,off和len分别对应参数offset和length。

1. mmap API解释

对mmap()/munmap()的使用比较简单,有两个参数组合导致了多样性,分别是protflags

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);
int munmap(void *addr, size_t length);

下面对这些参数做一个简单的介绍:

  • addr:如果不为NULL,内核会在此地址创建映射;否则,内核会选择一个合适的虚拟地址。大部分情况不指定虚拟地址,意义不大,而是让内核选择返回一个地址给用户空间使用。
  • length:表示映射到进程地址空间的大小。
  • prot:内存区域的读/写/执行属性。
  • flags:内存映射的属性,共享、私有、匿名、文件等。
  • fd:表示这是一个文件映射,fd是打开文件的句柄。如果是文件映射,需要指定fd;匿名映射就指定一个特殊的-1。
  • offset:在文件映射时,表示相对文件头的偏移量;返回的地址是偏移量对应的虚拟地址。

1.1 mmap优点

1.1.1 提升效率

一般读写文件需要open、read、write,需要先将磁盘文件读取到内核cache缓冲区,然后再拷贝到用户空间内存区,设计两次读写操作。

mmap通过将磁盘文件映射到用户空间,当进程读文件时,发生缺页中断,给虚拟内存分配对应的物理内存,在通过磁盘调页操作将磁盘数据读到物理内存上,实现了用户空间数据的读取,整个过程只有一次内存拷贝。

1.1.2 用于进程间大数据量通信

两个进程映射同一个文件,在两个进程中,同一个文件区域映射的虚拟地址空间不同。一个进程操作文件时,先通过缺页获取物理内存,进而通过磁盘文件调页操作将文件数据读入内存。

另一个进程访问文件的时候,发现没有物理页面映射到虚拟内存,通过fs的缺页处理查找cache区是否有读入磁盘文件,有的话建立映射关系,这样两个进程通过共享内存就可以进行通信。

1.1.3 文件关闭,内存可以继续使用

因为在内核中已经通过fd找到对应的磁盘文件,从而将文件跟vma关联。

1.2 mmap缺点

映射时文件长度已经确定,没法通过mmap访问操作len的区间。

1.3 私有/共享、文件/匿名映射组合

共有四种组合,下面逐一介绍。

1.3.1 私有文件映射

多个进程使用同样的物理页面进行初始化,但是各个进程对内存文件的修改不会共享,也不会反映到物理文件中。

比如对linux .so动态库文件就采用这种方式映射到各个进程虚拟地址空间中。

1.3.2 私有匿名映射

mmap会创建一个新的映射,各个进程不共享,主要用于分配内存(malloc分配大内存会调用mmap)。

1.3.3 共享文件映射

多个进程通过虚拟内存技术共享同样物理内存,对内存文件的修改会反应到实际物理内存中,也是进程间通信的一种。

1.3.4 共享匿名映射

这种机制在进行fork时不会采用写时复制,父子进程完全共享同样的物理内存页,也就是父子进程通信。

2. mmap内核实现

系统调用的入口是entry_SYSCALL_64_fastpath,然后根据系统调用号在sys_call_table中找到对应的函数。

mmap()和munmap()对应的系统调用分别是SyS_mmap()和SyS_munmap()下面就来分析一下实现。

2.0 mmap/munmap调用路径

在分析具体内核实现之前,通过脚本来看看mmap/munmap调用路径。

通过增加set_ftrace_filter的函数,修改current_tracer发现函数的调用者,逐步丰富调用路径。

#!/bin/bash 

DPATH="/sys/kernel/debug/tracing"
PID=$$
## Quick basic checks
[ `id -u` -ne ] && { echo "needs to be root" ; exit ; } # check for root permissions
[ -z $ ] && { echo "needs process name as argument" ; exit ; } # check for args to this function
mount | grep -i debugfs &> /dev/null
[ $? -ne ] && { echo "debugfs not mounted, mount it first"; exit ; } #checks for debugfs mount # flush existing trace data
echo > $DPATH/trace
echo nop > $DPATH/current_tracer echo > $DPATH/set_ftrace_filter
echo "SyS_mmap SyS_mmap_pgoff SyS_munmap SyS_open SyS_read SyS_write SyS_close SyS_brk SyS_msync" >> $DPATH/set_ftrace_filter
echo "do_brk elf_map load_elf_binary" >> $DPATH/set_ftrace_filter
echo "do_mmap do_munmap get_unmapped_area mmap_region vm_mmap vm_munmap vm_mmap_pgoff" >> $DPATH/set_ftrace_filter
echo "__split_vma* unmap_region" >> $DPATH/set_ftrace_filter # set function tracer
echo function_graph > $DPATH/current_tracer # write current process id to set_ftrace_pid file
echo $PID > $DPATH/set_ftrace_pid #echo "common_pid==$PID" > /sys/kernel/debug/tracing/events/syscalls/sys_enter_mmap/filter
#echo > /sys/kernel/debug/tracing/events/syscalls/sys_enter_mmap/enable
#echo "common_pid==$PID" > /sys/kernel/debug/tracing/events/syscalls/sys_enter_munmap/filter
#echo > /sys/kernel/debug/tracing/events/syscalls/sys_enter_munmap/enable # start the tracing
echo > $DPATH/tracing_on
# execute the process
exec $* #sudo cat $DPATH/trace > /home/al/v4l2/trace.txt

最后使用function_graph跟踪器查看调用关系如下:

 )               |SyS_mmap() {
) |SyS_mmap_pgoff() {
) |vm_mmap_pgoff() {
) |do_mmap() {
) 0.548 us |get_unmapped_area();
) 3.388 us |mmap_region();
) 4.598 us | }
) 5.286 us | }
) 5.756 us | }
) 6.058 us | }
) |SyS_munmap() {
) |vm_munmap() {
) |do_munmap() {
) + 99.985 us |unmap_region();
) ! 101.439 us | }
) ! 101.838 us | }
) ! 102.410 us | }

下面就围绕这条路径展开分析。

2.1 mmap()

mmap()系统调用的核心是do_mmap(),可以分为三部分。

第一部分通过get_unmapped_area()函数,找到一段虚拟地址,范围是[addr, addr+len]。

用户进程一般不会指定addr,也就是由内核指定这个虚拟空间的首地址addr在哪里。

在函数do_mmap_pgoff()调用get_unmapped_area()之前会预指定addr,通过round_hint_to_min()实现,然后用这个预指定addr为参数调用get_unmapped_area()。

第二部分确定vma线性区的flags,针对文件、匿名,私有、共享有所不同。

第三部分是实际创建vma先行区,通过函数mmap_region()实现。

asmlinkage unsigned long
sys_mmap (unsigned long addr, unsigned long len, int prot, int flags, int fd, long off)
{
if (offset_in_page(off) != )
return -EINVAL; addr = sys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT);
if (!IS_ERR((void *) addr))
force_successful_syscall_return();
return addr;
} SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, pgoff)
{
struct file *file = NULL;
unsigned long retval; if (!(flags & MAP_ANONYMOUS)) {------------------------------------------对非匿名文件映射的检查,必须能根据文件句柄找到struct file。
audit_mmap_fd(fd, flags);
file = fget(fd);
if (!file)
return -EBADF;
if (is_file_hugepages(file))
len = ALIGN(len, huge_page_size(hstate_file(file)));-------------根据file->f_op来判断是否是hugepage,然后进行hugepage页面对齐。
retval = -EINVAL;
if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
goto out_fput;
} else if (flags & MAP_HUGETLB) {
struct user_struct *user = NULL;
struct hstate *hs; hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
if (!hs)
return -EINVAL; len = ALIGN(len, huge_page_size(hs));
/*
* VM_NORESERVE is used because the reservations will be
* taken when vm_ops->mmap() is called
* A dummy user value is used because we are not locking
* memory so no accounting is necessary
*/
file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
VM_NORESERVE,
&user, HUGETLB_ANONHUGE_INODE,
(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
if (IS_ERR(file))
return PTR_ERR(file);
} flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); retval =vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
out_fput:
if (file)
fput(file);
return retval;
} unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long pgoff)
{
unsigned long ret;
struct mm_struct *mm = current->mm;
unsigned long populate; ret = security_mmap_file(file, prot, flag);
if (!ret) {
down_write(&mm->mmap_sem);
ret =do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
&populate);
up_write(&mm->mmap_sem);
if (populate)
mm_populate(ret, populate);
}
return ret;
} unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, vm_flags_t vm_flags,
unsigned long pgoff, unsigned long *populate)
{
struct mm_struct *mm = current->mm; *populate = ; if (!len)
return -EINVAL; if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
if (!(file && path_noexec(&file->f_path)))
prot |= PROT_EXEC; if (!(flags & MAP_FIXED))-------------------------------------------------对于非MAP_FIXED,addr不能小于mmap_min_addr大小,如果小于则使用mmap_min_addr页对齐后的地址。
addr = round_hint_to_min(addr); /* Careful about overflows.. */
len = PAGE_ALIGN(len);
if (!len)-----------------------------------------------------------------这里不是判断len是否为0,而是检查len是否溢出。
return -ENOMEM; /* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)--------------------------------检查offset是否溢出
return -EOVERFLOW; /* Too many mappings? */
if (mm->map_count > sysctl_max_map_count)---------------------------------进程中mmap个数限制,超出返回ENOMEM错误。
return -ENOMEM;
addr =get_unmapped_area(file, addr, len, pgoff, flags);------------------在创建新的ma区域之前首先寻找一块足够大小的空闲区域,本函数就是用于查找未映射的区域,返回值addr就是这段空间的首地址。
if (offset_in_page(addr))
return addr; vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;------------根据prot/flags以及mm->flags来得到vm_flags。 if (flags & MAP_LOCKED)
if (!can_do_mlock())
return -EPERM; if (mlock_future_check(mm, vm_flags, len))
return -EAGAIN; if (file) {---------------------------------------------------------------文件映射情况处理,主要更新vm_flags。
struct inode *inode = file_inode(file); if (!file_mmap_ok(file, inode, pgoff, len))
return -EOVERFLOW; switch (flags & MAP_TYPE) {
case MAP_SHARED:------------------------------------------------------共享文件映射
if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
return -EACCES;
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
return -EACCES;
if (locks_verify_locked(file))
return -EAGAIN;
vm_flags |= VM_SHARED | VM_MAYSHARE;
if (!(file->f_mode & FMODE_WRITE))
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
case MAP_PRIVATE:-----------------------------------------------------私有文件映射
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (path_noexec(&file->f_path)) {
if (vm_flags & VM_EXEC)
return -EPERM;
vm_flags &= ~VM_MAYEXEC;
}
if (!file->f_op->mmap)
return -ENODEV;
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
break;
default:
return -EINVAL;
}
} else {------------------------------------------------------------------匿名映射情况处理
switch (flags & MAP_TYPE) {
case MAP_SHARED:------------------------------------------------------共享匿名映射
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
pgoff = ;--------------------------------------------------------为什么为0?
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_PRIVATE:-----------------------------------------------------私有匿名映射
pgoff = addr >> PAGE_SHIFT;
break;
default:
return -EINVAL;
}
}
if (flags & MAP_NORESERVE) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE; /* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
} addr =mmap_region(file, addr, len, vm_flags, pgoff);--------------------实际创建vma
if (!IS_ERR_VALUE(addr) &&
((vm_flags & VM_LOCKED) ||
(flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
*populate = len;
return addr;
}

get_unmapped_area()根据输入的addr,以及其它参数通过get_area()来找到一个满足条件的虚拟空间,返回这个虚拟空间的首地址。

get_area()是一个函数指针,有两种可能使用mm->get_unmapped_area()或者file->f_op->get_unmapped_area()。

unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long (*get_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long); unsigned long error = arch_mmap_check(addr, len, flags);
if (error)
return error; /* Careful about overflows.. */
if (len > TASK_SIZE)
return -ENOMEM; get_area = current->mm->get_unmapped_area;------------使用mm_struct->get_unmapped_area()方法,即arch_get_unmapped_area()。
if (file && file->f_op->get_unmapped_area)------------如果是文件映射,并且该文件的file_operations定义了get_unmapped_area方法,那么使用它实现定位虚拟区间。
get_area = file->f_op->get_unmapped_area;
addr = get_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
return addr; if (addr > TASK_SIZE - len)
return -ENOMEM;
if (offset_in_page(addr))
return -EINVAL; addr = arch_rebalance_pgtables(addr, len);
error = security_mmap_addr(addr);
return error ? error : addr;
}

看arch_get_unmapped_area()名字就知道,可能有各架构自己的实现函数。这里以平台无关的函数进行分析。

arch_get_unmapped_area()完成从低地址向高地址创建新的映射,而arch_get_unmapped_area_topdown()完成从高地址向低地址创建新的映射。

unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
int do_align = ;
int aliasing = cache_is_vipt_aliasing();
struct vm_unmapped_area_info info; if (aliasing)
do_align = filp || (flags & MAP_SHARED); if (flags & MAP_FIXED) {------------------这里可以看出MAP_FIXED不参与选址,固定地址创建。
if (aliasing && flags & MAP_SHARED &&
(addr - (pgoff << PAGE_SHIFT)) & (SHMLBA - ))
return -EINVAL;
return addr;
} if (len > TASK_SIZE)
return -ENOMEM; if (addr) {--------------------------------当addr非0,表示制定了一个特定的优先选用地址,内核会检查该区域是否与现存区域重叠,有find_vma()完成查找功能。
if (do_align)
addr = COLOUR_ALIGN(addr, pgoff);
else
addr = PAGE_ALIGN(addr); vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vm_start_gap(vma)))
return addr;
} info.flags = ;
info.length = len;
info.low_limit = mm->mmap_base;
info.high_limit = TASK_SIZE;
info.align_mask = do_align ? (PAGE_MASK & (SHMLBA - )) : ;
info.align_offset = pgoff << PAGE_SHIFT;
return vm_unmapped_area(&info);-----------当addr为空或者指定的优选地址不满足分配条件时,内核必须遍历进程中可用的区域,设法找到一个大小适当的空闲区域,vm_unmapped_area()完成实际的工作。
} static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info *info)
{
if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
return unmapped_area_topdown(info);--从高地址到低地址穿点映射。
else
returnunmapped_area(info);----------从低地址到高地址创建映射。
} unsigned long unmapped_area(struct vm_unmapped_area_info *info)
{
/*
* We implement the search by looking for an rbtree node that
* immediately follows a suitable gap. That is,
* - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
* - gap_end = vma->vm_start >= info->low_limit + length;
* - gap_end - gap_start >= length
*/ struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long length, low_limit, high_limit, gap_start, gap_end; /* Adjust search length to account for worst case alignment overhead */
length = info->length + info->align_mask;
if (length < info->length)
return -ENOMEM; /* Adjust search limits by the desired length */
if (info->high_limit < length)
return -ENOMEM;
high_limit = info->high_limit - length; if (info->low_limit > high_limit)
return -ENOMEM;
low_limit = info->low_limit + length; /* Check if rbtree root looks promising */
if (RB_EMPTY_ROOT(&mm->mm_rb))
goto check_highest;
vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
if (vma->rb_subtree_gap < length)
goto check_highest; while (true) {
/* Visit left subtree if it looks promising */
gap_end = vm_start_gap(vma);----------------------------------先从低地址开始查询。
if (gap_end >= low_limit && vma->vm_rb.rb_left) {
struct vm_area_struct *left =
rb_entry(vma->vm_rb.rb_left,
struct vm_area_struct, vm_rb);
if (left->rb_subtree_gap >= length) {
vma = left;
continue;
}
} gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : ;------当前结点rb_subtree_gap已经是最后一个可能满足这次分配。
check_current:
/* Check if current node has a suitable gap */
if (gap_start > high_limit)
return -ENOMEM;
if (gap_end >= low_limit &&
gap_end > gap_start && gap_end - gap_start >= length)
goto found; /* Visit right subtree if it looks promising */
if (vma->vm_rb.rb_right) {
struct vm_area_struct *right =
rb_entry(vma->vm_rb.rb_right,
struct vm_area_struct, vm_rb);
if (right->rb_subtree_gap >= length) {
vma = right;
continue;
}
} /* Go back up the rbtree to find next candidate node */
while (true) {
struct rb_node *prev = &vma->vm_rb;
if (!rb_parent(prev))
goto check_highest;
vma = rb_entry(rb_parent(prev),
struct vm_area_struct, vm_rb);
if (prev == vma->vm_rb.rb_left) {
gap_start = vm_end_gap(vma->vm_prev);
gap_end = vm_start_gap(vma);
goto check_current;
}
}
} check_highest:
/* Check highest gap, which does not precede any rbtree node */
gap_start = mm->highest_vm_end;
gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
if (gap_start > high_limit)
return -ENOMEM; found:
/* We found a suitable gap. Clip it with the original low_limit. */
if (gap_start < info->low_limit)
gap_start = info->low_limit; /* Adjust gap address to the desired alignment */
gap_start += (info->align_offset - gap_start) & info->align_mask; VM_BUG_ON(gap_start + info->length > info->high_limit);
VM_BUG_ON(gap_start + info->length > gap_end);
return gap_start;
}

mmap_region()首先调用find_vma_links()查找是否已有vma线性区包含addr,如果有调用do_munmap()把这个vma干掉。

Linux不希望vma和vma之间存在空洞,只要新创建vma的flags属性和前面或者后面vma仙童,就尝试合并成一个新的vma,减少slab缓存消耗量,同时也减少了空洞浪费。

如果无法合并,那么只好新创建vma并对vma结构体初始化先关成员;根据vma是否有页锁定标志(VM_LOCKED),决定是否立即分配物理页。

最后将新建的vma插入进程空间vma红黑树中,并返回addr。

unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
int error;
struct rb_node **rb_link, *rb_parent;
unsigned long charged = ; /* Check against address space limit. */
if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {--------------------检查当前total_vm+len是否查过RLIMIT_AS,确保虚拟映射可以进行。
unsigned long nr_pages; if (!(vm_flags & MAP_FIXED))
return -ENOMEM; nr_pages = count_vma_pages_range(mm, addr, addr + len); if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
return -ENOMEM;
} while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
&rb_parent)) {-----------------------------------遍历该进程已有的vma红黑树,如果找到vma覆盖[addr, end]区域,那么返回0,表示找到。如果覆盖已有的vma区域,返回ENOMEM。
if (do_munmap(mm, addr, len))------------------------------存在覆盖已有区域的情况,那么尝试取munmap这块区域。如果munmap成功返回0,不成功则mmap_region()失败。
return -ENOMEM;
} if (accountable_mapping(file, vm_flags)) {
charged = len >> PAGE_SHIFT;
if (security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
vm_flags |= VM_ACCOUNT;
} vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);-----------------------至此表示已经可以找到合适的vma区域,原有映射是否可以被新的映射复用,减少因为vma导致的slab消耗和虚拟内存的空洞。
if (vma)
goto out; vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);----------------------在没有找到的情况下,新建一个vma。
if (!vma) {
error = -ENOMEM;
goto unacct_error;
} vma->vm_mm = mm;---------------------------------------------------------初始化vma数据
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags;
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
INIT_LIST_HEAD(&vma->anon_vma_chain); if (file) {--------------------------------------------------------------如果是文件映射
if (vm_flags & VM_DENYWRITE) {
error = deny_write_access(file);
if (error)
goto free_vma;
}
if (vm_flags & VM_SHARED) {
error = mapping_map_writable(file->f_mapping);
if (error)
goto allow_write_and_free_vma;
} vma->vm_file = get_file(file);
error = file->f_op->mmap(file, vma);---------------------------------调用文件操作函数集的mmap成员。
if (error)
goto unmap_and_free_vma; WARN_ON_ONCE(addr != vma->vm_start); addr = vma->vm_start;
vm_flags = vma->vm_flags;
} else if (vm_flags & VM_SHARED) {--------------------------------------共享匿名区
error = shmem_zero_setup(vma);
if (error)
goto free_vma;
} vma_link(mm, vma, prev, rb_link, rb_parent);----------------------------将新建的vma插入到进程地址空间的vma红黑树中,已经做一些计数更新等。
/* Once vma denies write, undo our temporary denial count */
if (file) {
if (vm_flags & VM_SHARED)
mapping_unmap_writable(file->f_mapping);
if (vm_flags & VM_DENYWRITE)
allow_write_access(file);
}
file = vma->vm_file;
out:
perf_event_mmap(vma); vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm)))
mm->locked_vm += (len >> PAGE_SHIFT);
else
vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
} if (file)
uprobe_mmap(vma); vma->vm_flags |= VM_SOFTDIRTY; vma_set_page_prot(vma); return addr; unmap_and_free_vma:
vma->vm_file = NULL;
fput(file); /* Undo any partial mapping done by a device driver. */
unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
charged = ;
if (vm_flags & VM_SHARED)
mapping_unmap_writable(file->f_mapping);
allow_write_and_free_vma:
if (vm_flags & VM_DENYWRITE)
allow_write_access(file);
free_vma:
kmem_cache_free(vm_area_cachep, vma);
unacct_error:
if (charged)
vm_unacct_memory(charged);
return error;
}

参考文档:《linux进程地址空间(3) 内存映射(1)mmap与do_mmap》、《进程地址空间 get_unmmapped_area()

2.2 munmap

检查目标地址在当前进程的虚拟空间是否已经在使用,如果已经在使用就要将老的映射撤销,要是这个操作失败,则goto free_vma。因为flags的标志位为MAP_FIXED为1时,并未对此检查。

munmap()用于解除内存映射,其核心函数式do_munmap()。

SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
{
profile_munmap(addr);
returnvm_munmap(addr, len);
} int vm_munmap(unsigned long start, size_t len)
{
int ret;
struct mm_struct *mm = current->mm; down_write(&mm->mmap_sem);
ret =do_munmap(mm, start, len);
up_write(&mm->mmap_sem);
return ret;
} int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
{
unsigned long end;
struct vm_area_struct *vma, *prev, *last; if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
return -EINVAL; len = PAGE_ALIGN(len);
if (len == )
return -EINVAL; /* Find the first overlapping VMA */
vma = find_vma(mm, start);-----------------找到起始地址落在哪个vma内。
if (!vma)----------------------------------如果没有找到的话,直接返回0。
return ;
prev = vma->vm_prev; end = start + len;
if (vma->vm_start >= end)------------------如果要释放空间的结束地址都小于vma起始地址,说明这两者没有重叠,直接退出。
return ; if (start > vma->vm_start) {
int error; if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
return -ENOMEM; error = __split_vma(mm, vma, start, );----由于start>vma->vm_start,说明要释放空间和vm_start有一段空隙。这里就是分离这段gap。
if (error)
return error;
prev = vma;
} last = find_vma(mm, end);----------------------找到要释放空间结束地址的vma。
if (last && end > last->vm_start) {
int error = __split_vma(mm, last, end, );-如果if成立,说明要释放空间end和vm_start之间有gap,就需要分离这段gap。
if (error)
return error;
}
vma = prev ? prev->vm_next : mm->mmap; if (mm->locked_vm) {
struct vm_area_struct *tmp = vma;
while (tmp && tmp->vm_start < end) {
if (tmp->vm_flags & VM_LOCKED) {
mm->locked_vm -= vma_pages(tmp);
munlock_vma_pages_all(tmp);-------如果这段空间是VM_LOCKED,就需要unlock。
}
tmp = tmp->vm_next;
}
} detach_vmas_to_be_unmapped(mm, vma, prev, end);
unmap_region(mm, vma, prev, start, end);------释放实际占用的页面。 arch_unmap(mm, vma, start, end); /* Fix up all other VM information */
remove_vma_list(mm, vma);---------------------删除mm_struct结构中的vma信息。 return ;
} static void unmap_region(struct mm_struct *mm,
struct vm_area_struct *vma, struct vm_area_struct *prev,
unsigned long start, unsigned long end)
{
struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
struct mmu_gather tlb; lru_add_drain();
tlb_gather_mmu(&tlb, mm, start, end);
update_hiwater_rss(mm);
unmap_vmas(&tlb, vma, start, end);---------扫描线性地址空间的所有页表项
free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
next ? next->vm_start : USER_PGTABLES_CEILING);---回收上一步已经清空的进程页表。
tlb_finish_mmu(&tlb, start, end);----------刷新TLB,在多处理器系统中,调用freepages_and_swap_cache()释放页框。
} void unmap_vmas(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start_addr,
unsigned long end_addr)
{
struct mm_struct *mm = vma->vm_mm; mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
}

参考文档:《内存管理API之do_munmap》《释放线性地址区间》。

2.3 msync()

进程对映射的内存空间内容改变并不直接回写到磁盘中,往往在调用munmap()后才执行操作。

msync()函数将映射内存空间内容同步到磁盘文件中。

SYSCALL_DEFINE3(msync, unsigned long, start, size_t, len, int, flags)
{
unsigned long end;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
int unmapped_error = ;
int error = -EINVAL; if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC))
goto out;
if (offset_in_page(start))
goto out;
if ((flags & MS_ASYNC) && (flags & MS_SYNC))
goto out;
error = -ENOMEM;
len = (len + ~PAGE_MASK) & PAGE_MASK;
end = start + len;
if (end < start)
goto out;
error = ;
if (end == start)
goto out;
/*
* If the interval [start,end) covers some unmapped address ranges,
* just ignore them, but return -ENOMEM at the end.
*/
down_read(&mm->mmap_sem);
vma = find_vma(mm, start);
for (;;) {
struct file *file;
loff_t fstart, fend; /* Still start < end. */
error = -ENOMEM;
if (!vma)
goto out_unlock;
/* Here start < vma->vm_end. */
if (start < vma->vm_start) {
start = vma->vm_start;
if (start >= end)
goto out_unlock;
unmapped_error = -ENOMEM;
}
/* Here vma->vm_start <= start < vma->vm_end. */
if ((flags & MS_INVALIDATE) &&
(vma->vm_flags & VM_LOCKED)) {
error = -EBUSY;
goto out_unlock;
}
file = vma->vm_file;
fstart = (start - vma->vm_start) +
((loff_t)vma->vm_pgoff << PAGE_SHIFT);
fend = fstart + (min(end, vma->vm_end) - start) - ;
start = vma->vm_end;
if ((flags & MS_SYNC) && file &&
(vma->vm_flags & VM_SHARED)) {
get_file(file);
up_read(&mm->mmap_sem);
error = vfs_fsync_range(file, fstart, fend, );
fput(file);
if (error || start >= end)
goto out;
down_read(&mm->mmap_sem);
vma = find_vma(mm, start);
} else {
if (start >= end) {
error = ;
goto out_unlock;
}
vma = vma->vm_next;
}
}
out_unlock:
up_read(&mm->mmap_sem);
out:
return error ? : unmapped_error;
} int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host; if (!file->f_op->fsync)
return -EINVAL;
if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
spin_lock(&inode->i_lock);
inode->i_state &= ~I_DIRTY_TIME;
spin_unlock(&inode->i_lock);
mark_inode_dirty_sync(inode);
}
return file->f_op->fsync(file, start, end, datasync);
}

2.4 malloc和brk()/mmap()关系

通过getconf PAGESIZE查看当前系统页面大小,可知当前系统页面大小为4096。

malloc()分配内存,并不一定都通过brk()进行;如果分配的内存达到128K,就要通过mmap进行。

#include<unistd.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<sys/mman.h> #define MAX (4096*31+4072) int main()
{
int i=;
char *array = (char *)malloc(MAX); for( i=; i<MAX; ++i )
++array[ i ]; free(array); return ;
}

下面就来看看MAX不同大小,对malloc的影响。

当MAX为(4096*31+4072)时,跟踪系统调用如下:

...
brk(0x244c000) = 0x244c000
brk(0x242c000) = 0x242c000
exit_group(0) = ?
+++ exited with 0 +++

当MAX为(4096*31+4073)时,跟踪系统调用如下:

...
mmap(NULL, 135168, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f12b88c9000
munmap(0x7f12b88c9000, 135168) = 0
exit_group(0) = ?
+++ exited with 0 +++

可以看出当分配的内存接近128KB是,malloc()会对齐到128KB,并且附加了1页作为gap。实际分配的虚拟地址空间达到了132kB。

3. mmap测试

3.1 mmap()/munmap()相对于read()/write()优势

上面有提到mmap()后对内存的操作相对于普通的read()/write()速度更快,这里进行一个简单测试。

#include<unistd.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<sys/time.h>
#include<fcntl.h>
#include<sys/mman.h> #define MAX 1024*128 int main()
{
int i=;
int count=, fd=;
struct timeval tv1, tv2;
char *array = (char *)malloc(MAX); /*read*/
gettimeofday( &tv1, NULL );
fd = open( "./mmap_test", O_RDWR|O_CREAT, S_IRUSR|S_IWUSR);
if(fd<)
printf("Open file failed\n");
if(MAX != read( fd, (char*)array, MAX ))
{
printf("Reading data failed...\n");
return -;
} memset(array, 'a', MAX); lseek(fd,,SEEK_SET);
if(MAX != write(fd, (void *)array, MAX))
{
printf( "Writing data failed...\n" );
return -;
}
close( fd );
gettimeofday( &tv2, NULL );
free( array ); printf( "Time of read/write: %ldus\n", (tv2.tv_usec - tv1.tv_usec)); /*mmap*/
gettimeofday( &tv1, NULL );
fd = open( "./mmap_test2", O_RDWR|O_CREAT, S_IRUSR|S_IWUSR);
array = mmap( NULL, MAX, PROT_READ|PROT_WRITE, MAP_SHARED, fd, ); memset(array, 'b', MAX); munmap( array, MAX );
msync( array, MAX, MS_SYNC );
close( fd );
gettimeofday( &tv2, NULL ); printf( "Time of mmap/munmap/msync: %ldus\n", (tv2.tv_usec - tv1.tv_usec)); return ;
}

首先创建两个128KB的空文件。

dd bs=1024 count=128 if=/dev/zero of=./mmap_test

dd bs=1024 count=128 if=/dev/zero of=./mmap_test2

两个文件内容分别变成了'A'和'B',可以看出mmap领先不少:

Time of read/write: 134us
Time of mmap/munmap/msync: 91us

3.2 mmap和/proc/xxx/maps解析

#include<stdio.h>
#include<unistd.h> void main()
{
sleep();
}

通过strace执行如上应用,得到如下的系统调用过程。

execve("./sleep", ["./sleep"], [/* 77 vars */]) = 0
brk(NULL) = 0x1286000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=145720, ...}) = 0
mmap(NULL, 145720, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fa2e0dec000--------------------------------------------------------1,只读私有文件映射,在a处释放。
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\t\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=1868984, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa2e0deb000--------------------------------2,匿名映射一页,范围0x7fa2e0deb000-0x7fa2e0dec000,可读写
mmap(NULL, 3971488, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fa2e0821000-------------------------------3,创建可读可执行,私有文件映射,范围0x7fa2e0821000-0x7fa2e0beb000
mprotect(0x7fa2e09e1000, 2097152, PROT_NONE) = 0-------------------------------------------------------------------------4,修改0x7fa2e09e1000-0x7fa2e0be1000属性,不可读写执行
mmap(0x7fa2e0be1000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c0000) = 0x7fa2e0be1000-----5,私有文件固定地址映射,可读写,0x7fa2e0be1000-0x7fa2e0be7000
mmap(0x7fa2e0be7000, 14752, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fa2e0be7000-----------6,私有匿名固定地址映射,可读写,0x7fa2e0be7000-0x7fa2e0beb000
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa2e0dea000--------------------------------7,匿名映射一页,范围0x7fa2e0dea000-0x7fa2e0deb000,可读写
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa2e0de9000--------------------------------8,匿名映射一页,范围0x7fa2e0de9000-0x7fa2e0dea000,可读写
arch_prctl(ARCH_SET_FS, 0x7fa2e0dea700) = 0
mprotect(0x7fa2e0be1000, 16384, PROT_READ) = 0---------------------------------------------------------------------------9,将5创建的内存映射的0x7fa2e0be1000-0x7fa2e0be5000变成只读
mprotect(0x600000, 4096, PROT_READ) = 0
mprotect(0x7fa2e0e10000, 4096, PROT_READ) = 0
munmap(0x7fa2e0dec000, 145720) = 0------------------------------------------------------------------------------a,释放1创建的内存映射
nanosleep({1000, 0}, 0x7ffef87e2c10) = 0------------------------------------------------------------------------------此时cat /proc/xxx/maps,1创建的内存映射已经被释放。
exit_group(0) = ?
+++ exited with 0 +++

下面逐一分析mmap()/munmap()对进程映射空间的影响。

00400000-00401000 r-xp 00000000 08:08 3415949                            /home/al/mmap/sleep
00600000-00601000 r--p 00000000 08:08 3415949 /home/al/mmap/sleep
00601000-00602000 rw-p 00001000 08:08 3415949 /home/al/mmap/sleep
7fa2e0821000-7fa2e09e1000 r-xp 00000000 08:08 3185985 /lib/x86_64-linux-gnu/libc-2.23.so--------------3创建私有文件映射,可读可执行。
7fa2e09e1000-7fa2e0be1000 ---p 001c0000 08:08 3185985 /lib/x86_64-linux-gnu/libc-2.23.so--------------3创建私有文件映射,4修改属性从可读可执行变成不可读写不可执行。
7fa2e0be1000-7fa2e0be5000 r--p 001c0000 08:08 3185985 /lib/x86_64-linux-gnu/libc-2.23.so--------------3创建私有文件映射,5修改属性从可读可执行变成可读写,9修改属性为只读。
7fa2e0be5000-7fa2e0be7000 rw-p 001c4000 08:08 3185985 /lib/x86_64-linux-gnu/libc-2.23.so--------------3创建私有文件映射,5修改属性从可读可执行变成可读写。
7fa2e0be7000-7fa2e0beb000 rw-p 00000000 00:00 0 -------------------------------------------------------------------------3创建私有文件映射,6覆盖创建的私有匿名固定地址映射,可读写。
7fa2e0beb000-7fa2e0c11000 r-xp 00000000 08:08 3185983 /lib/x86_64-linux-gnu/ld-2.23.so
7fa2e0de9000-7fa2e0dec000 rw-p 00000000 00:00 0 -------------------------------------------------------------------------2,7,8三个匿名映射因为属性都是私有匿名映射,可读写,所以vma区域合并。
7fa2e0e10000-7fa2e0e11000 r--p 00025000 08:08 3185983 /lib/x86_64-linux-gnu/ld-2.23.so
7fa2e0e11000-7fa2e0e12000 rw-p 00026000 08:08 3185983 /lib/x86_64-linux-gnu/ld-2.23.so
7fa2e0e12000-7fa2e0e13000 rw-p 00000000 00:00 0
7ffef87c3000-7ffef87e4000 rw-p 00000000 00:00 0 [stack]
7ffef87e4000-7ffef87e7000 r--p 00000000 00:00 0 [vvar]
7ffef87e7000-7ffef87e9000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

对于解释可以参考UNIX系统编程手册如下描述。

4. 参考文档

LINUX 中的mmap浅析

《linux内存映射mmap原理分析

Linux内存管理之mmap详解

Linux的mmap内存映射机制解析

Linux中的mmap的使用

Linux内核源代码情景分析-系统调用mmap()

Linux内存管理 (9)mmap(补充)的更多相关文章

  1. Linux内存管理 (9)mmap

    专题:Linux内存管理专题 关键词:文件映射.匿名映射.私有映射.共享映射 mmap/munmap是常用的一个系统调用,使用场景是:分配内存.读写大文件.连接动态库文件.多进程间共享内存. 更详细解 ...

  2. Linux内存管理之mmap详解

    转发之:http://blog.chinaunix.net/uid-26669729-id-3077015.html Linux内存管理之mmap详解 一. mmap系统调用 1. mmap系统调用  ...

  3. Linux 内存管理之mmap详解

    找了好多,最后发现下面这篇时讲的比较通俗易懂的. Linux内存管理之mmap详解-heavent2010-ChinaUnix博客 http://blog.chinaunix.net/uid-2666 ...

  4. 转:Linux内存管理之mmap详解

    一. mmap系统调用 1. mmap系统调用 mmap将一个文件或者其它对象映射进内存.文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零.munmap执行相 ...

  5. [转载] Linux内存管理之mmap详解

    转载自http://blog.chinaunix.net/uid-26669729-id-3077015.html 一. mmap系统调用 1. mmap系统调用 mmap将一个文件或者其它对象映射进 ...

  6. Linux内存管理之mmap详解 【转】

    转自:http://blog.chinaunix.net/uid-26669729-id-3077015.html 一. mmap系统调用 1. mmap系统调用 mmap将一个文件或者其它对象映射进 ...

  7. Linux内存管理之mmap详解 (可用于android底层内存调试)

    注:将android底层malloc换为mmap来获取内存,可将获取到的内存添加tag,从而再利用meminfo进行分析,可单独查看该tag的内存,从而进行分析. 一. mmap系统调用 1. mma ...

  8. Linux内存管理专题

    Linux的内存管理涉及到的内容非常庞杂,而且与内核的方方面面耦合在一起,想要理解透彻非常困难. 在开始学习之前进行了一些准备工作<如何展开Linux Memory Management学习?& ...

  9. Linux内存管理 【转】

    转自:http://blog.chinaunix.net/uid-25909619-id-4491368.html Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理 ...

随机推荐

  1. 网络编程第六讲Select模型

    网络模型第六讲Select模型 一丶Select模型是什么 以前我们讲过一个迭代模型.就是只服务一个客户端连接.但是实际网络编程中.复杂的很多. 比如一个 C/S架构程序 (客户端/服务端) 客户端很 ...

  2. [Code+#3] 寻找车位

    Description 给定一个大小为 \(n\times m\) 的 \(01\) 矩阵. 要求支持:单点翻转,询问子矩形内部最大正方形. \(n\times m\leq 4\cdot 10^6,n ...

  3. win10连接无线网,开启移动热点,手机连接它手机一直显示获取ip地址中。

    *必须要有无线网卡才能设置WIFI首先打开电脑,选中“计算机”或者“我的电脑”,右击进入“管理”选项“.打开“计算机管理”窗口之后,在左栏菜单选项中找到“服务和应用程序”下的“服务”选项,如图点击进入 ...

  4. c#源码的执行过程

    我想也许要写些东西,记录我做程序员的日子吧 ================================================ 要讲到C#源码的执行过程 首先要提下程序集,因为Clr并不 ...

  5. [PHP] 抽象类abstract的回顾

    1.abstract定义为抽象的类不能被实例化. 2.它里面至少有一个方法是被声明为抽象的,那么这个类就必须被声明为抽象的. 3.被定义为抽象的方法只是声明了其调用方式(参数),不能定义其具体的功能实 ...

  6. 委托(3).net 2.0中的委托

    由于.net 2.0引入了匿名方法,所以创建委托的方式可以更简化了. .net 2.0中的委托 有了匿名方法,上一篇的例子可以简化为: namespace DelegateDemo { //声明委托 ...

  7. 【转】Js正则表达式

    //校验是否全由数字组成 var patrn=/^[0-9]{1,20}$/ //校验登录名:只能输入5-20个以字母开头.可带数字.“_”.“.”的字串 var patrn=/^[a-zA-Z]{1 ...

  8. html iframe高度自适应

    想到的一种办法是,在父页面里获取子页面的高度,在父页面onlod里把获取到子页面的高度赋值给父页面iframe标签,不过这种方法感觉不是很好,因为浏览器兼容性不好,获取不到高度 这种方法有两种写法 & ...

  9. Lyndon Word学习笔记

    Lyndon Word 定义:对于字符串\(s\),若\(s\)的最小后缀为其本身,那么称\(s\)为Lyndon串 等价性:\(s\)为Lyndon串等价于\(s\)本身是其循环移位中最小的一个 性 ...

  10. ArcGIS API for JavaScript 4.2学习笔记[20] 使用缓冲区结合Query对象进行地震点查询【重温异步操作思想】

    这个例子相当复杂.我先简单说说这个例子是干啥的. 在UI上,提供了一个下拉框.两个滑动杆,以确定三个参数,使用这三个参数进行空间查询.这个例子就颇带空间查询的意思了. 第一个参数是油井类型,第二个参数 ...