Copied from: http://www.elsevier.com/journals/applied-mathematics-letters/0893-9659/guide-for-authors

The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics, is a potential contribution for this journal. This journal's focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.

Submission Limitations

Due to publishing constraints, only two submissions per author per year will be considered, at the discretion of the Editor-in-Chief. Once a paper is under review or has been accepted, all co-authors need to wait 6 months from the submission date before submitting another paper to this journa

Types of paper

There is a limit of 6 (six) typeset pages for all papers published by Applied Mathematics Letters.

Research Announcements
This rapid-publication journal now accepts Research Announcements along with short papers. The Research Announcements should be 3-4-page summaries of important results in a longer paper recently submitted to a leading journal by a well-established researcher. Applied Mathematics Letters will have the research announcement in print in about 3 months with the online version appearing in a month.

Contact details for submission

During the submission process you will be asked to choose a member of the Editorial Board of the journal whose field of interest is closest to the work submitted. For a complete and up to date listing of the members of the Editorial Board of the journal, please consult the journal's webpage at: http://www.elsevier.com/locate/aml.

Failure to meet the requirements will result in the rejection of your article.

REQUIREMENTS FOR SUBMITTING REVIEWERS

(1) Please prepare a list of 8 (eight) proposed reviewers. You MUST include Full Names, Department, University, Country and Email Addresses for each proposed reviewer. It should be a globally geographically diverse list of potential reviewers; there should be no more than two suggested referees from any particular area/region/country.

If you, or any of your co-authors, have submitted to our offices previously, please note that should not include reviewers on lists for your manuscripts in the last 2 years.

All proposed reviewers MUST be fluent in English to ensure the integrity of each review and the correct processing of all manuscripts.

(2) Proposed reviewers MUST BE experienced, well published researchers who are knowledgeable in your area of research. The editor-in-chief depends heavily on your suggestions for the choice of reviewers and a list of weak reviewers can be the basis for rejecting a submission. (Also minimize the number of leaders in the field who are typically too busy to be reviewers.) In addition, proposed reviewers MUST NOT BE former co-authors, instructors, co-workers, advisors, students, nor have had any other personal/working/professional relationship with you or any of your co-authors.

(3) Reviewers MUST NOT BE a member of our Journal's Editorial Board: 
http://www.journals.elsevier.com/applied-mathematics-letters/editorial-board

[数学杂志]AML的更多相关文章

  1. 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]

    家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做 ...

  2. [家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

    1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \ ...

  3. [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L

    1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家. 1736年1月25日生于 ...

  4. [家里蹲大学数学杂志]第237期Euler公式的美

    1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a.  $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b.  $i$: 虚数单位 $=\sqr ...

  5. [家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子

    Navier-Stokes equations 1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathca ...

  6. [家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A

    1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X ...

  7. [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何

    随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probabili ...

  8. [家里蹲大学数学杂志]第053期Legendre变换

    $\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛 ...

  9. [家里蹲大学数学杂志]第056期Tikhonov 泛函的变分

    设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov ...

随机推荐

  1. web框架开发-Django组件cookie与session

    http协议的每一次都是无保存状态的请求,这会带来很多的不方便,比如,一刷新网页,或者进入该网页的其他页面,无法保存之前的登录状态.为了解决类似这样的问题,引入了会话跟踪 会话跟踪技术 1 什么是会话 ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. linux sort排序及取前几条数据

    查看sort --help -n 根据字符串的数值进行比较 -k 根据某一个关键字的位置或者类型排序 -r 倒序排序 -t 字段分隔,后面跟分隔符 查看head --help -n 打印前几行记录,后 ...

  4. Parallel 类并行任务(仅仅当执行耗时操作时,才有必要使用)

    using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...

  5. Linux中断管理

    CPU和外设之间的交互,或CPU通过轮询机制查询,或外设通过中断机制主动上报. 对大部分外设中断比轮询效率高,但比如网卡驱动采取轮询比中断效率高. 这里重点关注ARM+Linux组合下中断管理,从底层 ...

  6. Struts2的核心——拦截器

    虽然以前已经学了很多的拦截器,但是在这里还是想重头梳理一下所有有关拦截器的知识,尤其是struts2中的拦截器 1:拦截器是什么? java里的拦截器是动态拦截Action调用的对象.它提供了一种机制 ...

  7. 线性回归和Logistic回归

    目录 线性回归 用线性回归模型拟合非线性关系 梯度下降法 最小二乘法 线性回归用于分类(logistic regression,LR) 目标函数 如何求解\(\theta\) LR处理多分类问题 线性 ...

  8. elementUi源码解析(1)--项目结构篇

    因为在忙其他事情好久没有更新iview的源码,也是因为后面的一些组件有点复杂在考虑用什么方式把复杂的功能逻辑简单的展示出来,还没想到方法,突然想到element的组件基本也差不多,内部功能的逻辑也差不 ...

  9. 646. Maximum Length of Pair Chain(medium)

    You are given n pairs of numbers. In every pair, the first number is always smaller than the second ...

  10. python如何安装pip及venv管理

    问题1:如何安装pip python的虚拟环境virtualenv的管理 背景: (1)python的版本很多,每个应用项目可能需要使用不同的版本,这样会导致兼容性问题: python的插件相当的丰富 ...