Background

Last day we talk about Python Basics in Chinese. Today, we will do data analysis with python and explain in English(No zuo, no die. In this section, we will discuss prominent hypotheses that have been proposed to explain the EU referendum result and how we try to capture them in our empirical analysis.

In this topic, we try to find application of Regularization Linear Regression and Overfitting.

Overfitting: the model is already so complex that it fits the idiosyncrasies of our training data, idiosyncrasies which limit the model's ability to generalize (as measured by the testing error).

  • Refer to there to see more background.
  • Data can be download here

we will look at four broad groups of variables:

  • EU exposure through immigration, trade and structural funds;
  • local public service provision and fiscal consolidation;
  • demography and education;
  • economic structure, wages and unemployment.

Let's have a brief view of the data

We can use pandas package to load various data file, including stata file (ending with ".dta").

from pandas.io.stata import StataReader, StataWriter
import pandas as pd
stata_data = StataReader("referendum data.dta", convert_categoricals=False) data = stata_data.read()# basic data
varlist = stata_data.varlist# variable list
value_labels = stata_data.value_labels() # labels/ description of data value
fmtlist = stata_data.fmtlist
variable_labels = stata_data.variable_labels()# labels/ description of the variables var = [i for i in variable_labels]
var_label = [variable_labels[i] for i in variable_labels]
df_labels = pd.DataFrame({"variable": var, "variable_label": var_label})# we use DataFrame to see the formated table of variable labels

Then, we can see variables meaning each, and the labels include: Total votes of remain/leave, Region of the votes, Population 60 older growth (2001-2011), Population 60 older (2001), Median hourly pay (2005), Median hourly pay change (2005-2015), Non-EU migrant resident share (2001), Non-EU migrant resident growth (2001-2011), Change in low skilled labour force share (2001-2011), Unemployment rate (2015), Total economy EU dependence (2010), Total fiscal cuts (2010-2015), EU Structural Funds per capita (2013) and so on.

Variable selection analysis

  • Dependent variable(DV): we choose 'Pct_Remain' as our DV as it decide whether remain or leave

  • Independent variable(IV): we choose 'Region', 'pensionergrowth20012011', 'ResidentAge60plusshare',

    'median_hourly_pay2005', 'median_hourly_pay_growth', 'NONEU_2001Migrantshare', 'NONEU_Migrantgrowth',

    'unqualifiedsharechange', 'umemployment_rate_aps', 'Total_EconomyEU_dependence', 'TotalImpactFLWAAYR', 'eufundspercapitapayment13'

  • Four types of IV:

    • EU exposure through immigration('NONEU_2001Migrantshare', 'NONEU_Migrantgrowth'), trade and structural funds('eufundspercapitapayment13');
    • Fiscal consolidation('TotalImpactFLWAAYR');
    • demography('Region', 'pensionergrowth20012011', 'ResidentAge60plusshare', 'unqualifiedsharechange');
    • economic structure('Total_EconomyEU_dependence'), wages('median_hourly_pay2005', 'median_hourly_pay_growth') and unemployment('umemployment_rate_aps').

    IVs = ['Region', 'pensionergrowth20012011', 'ResidentAge60plusshare', 'median_hourly_pay2005', 'median_hourly_pay_growth', 'NONEU_2001Migrantshare', 'NONEU_Migrantgrowth', 'unqualifiedsharechange', 'umemployment_rate_aps', 'Total_EconomyEU_dependence', 'TotalImpactFLWAAYR', 'eufundspercapitapayment13']

    df1 = pd.read_stata("referendum data.dta")

    df1 = df1.set_index("id")# load the stata data into DataFrame format data (df1) directly.

    df1.shape

(382, 109)

We can see the data has many attributes, and this lead problem to our model - overfitting and lacking generalization (generalize to new, unseen cases), we'll solve the problem next.

drop_list = list(set(var) - set(IVs) - {"id"} - {"Pct_Remain"})# to get our df including only selected attributes
df = df1.drop(drop_list, axis = 1)
df = df.dropna()
df.describe()# we can see the data has different magnitude(some less than 1, while some over 100, and one string type for "Region")

Encode the region

import warnings
warnings.filterwarnings("ignore",category=DeprecationWarning) #Next, we use LabelEncoder().fit_transform to transform Region into norminal variable
from sklearn.preprocessing import LabelEncoder
df['Region'] = LabelEncoder().fit_transform(df['Region'])
df.describe()

Y = pd.DataFrame(df['Pct_Remain'])# we select x and Y out as the IV and DVs
x = df.drop('Pct_Remain', axis = 1)
x.head()# view the x

Standardise the X - varibales

#We see that magnitude of our variables are different, we need to standardise the X - variables
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(x)
scaled_x = scaler.transform(x)
x_scaled_df = pd.DataFrame({x.columns[i]: scaled_x[:,i] for i in range(12)})
x_scaled_df.head()

Split data into train set and test set

from sklearn.model_selection import train_test_split
seed = 2019
test_size = 0.20 X_train, X_test, Y_train, Y_test = train_test_split(x_scaled_df, y, test_size = test_size, random_state = seed)

Train Model

# Import a range of sklearn functions
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression, Lasso, LassoCV, RidgeCV, Ridge, ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.feature_selection import SelectFromModel

Fit an OLS linear model to the x and y

#Fit an OLS model to the data and view the coefficients
reg_OLS = LinearRegression(normalize=True).fit(X_train, Y_train)
coef = pd.Series(reg_OLS.coef_, index = x_scaled_df.columns)
print(coef)

To compare, we also choose Lasso model - A Regularization Technique

Fit a Lasso model - A Regularization Technique

Lasso model use alpha as the penalty parameter to solve overfitting problem.

LassoCV can be used to iteratively fit the alpha parameter. Try running this now and printing out the coeffs

reg_LassoCV = LassoCV(normalize=True)
reg_LassoCV.fit(X_train,Y_train) print("Best alpha using built-in LassoCV: %f" % reg_LassoCV.alpha_)
print("Best score using built-in LassoCV: %f" %reg_LassoCV.score(X_train,Y_train))
coef = pd.Series(reg_LassoCV.coef_, index = x_scaled_df.columns)
print(coef)

%matplotlib inline
import matplotlib.pyplot as plt# let's see the coefficient in graph
imp_coef = coef.sort_values()
plt.rcParams['figure.figsize'] = (8.0, 10.0)
imp_coef.plot(kind = "barh")
plt.title("Feature importance using Lasso Model")

View accuracy of the model

There, we assume when "Pct_Remain" (percentage of those who choose remain) is less than 0.5, people choose to leave while over 0.5, remain.

from sklearn.metrics import *
def predict( model, X_test = X_test, Y_test = Y_test):
"""
Input: trained model, test_IVs(X) and test_DV(Y)
Output: accuracy of the model(as the assumption defines)
"""
Y_test_0_1 = [0 if i<50 else 1 for i in Y_test]
y_pred = model.predict(X_test)
predictions = [0 if i<50 else 1 for i in y_pred]
accuracy = accuracy_score(Y_test_0_1, predictions)
confusion_matrix1 = confusion_matrix(Y_test_0_1, predictions)
print(model)
print("Confusion matrix:\n"+str(confusion_matrix1))
return ("Accuracy: %.2f%%" % (accuracy * 100.0)) predict(reg_OLS, X_test, Y_test)

predict(reg_LassoCV, X_test, Y_test)

We can see that regularized OLS gives same result as OLS model, mainly because we selecte 12 IVs (far more less than 367 observations) by observation or experience. Thus, the train model doesn't meet the overfitting problem.

What if we choose all variables?

df1_all = df1.dropna()
Y_all = df1_all["Pct_Remain"]
X_all = df1_all.drop("Pct_Remain", axis = 1)
for i in X_all.columns:
X_all[i] = LabelEncoder().fit_transform(X_all[i])#Label Encoder scaler = StandardScaler().fit(X_all)
scaled_x = scaler.transform(X_all)
x_all_scaled_df = pd.DataFrame({X_all.columns[i]: scaled_x[:,i] for i in range(len(X_all.columns))})#standardise X seed = 2019
test_size = 0.20
X_train_all, X_test_all, Y_train_all, Y_test_all = train_test_split(x_all_scaled_df, Y_all, test_size = test_size, random_state = seed) reg_OLS_all = LinearRegression(normalize=True).fit(X_train_all, Y_train_all)
reg_LassoCV_all = LassoCV(normalize=True)
reg_LassoCV_all.fit(X_train_all,Y_train_all) predict(reg_OLS_all, X_test_all, Y_test_all)

predict(reg_LassoCV_all, X_test_all, Y_test_all)

We can see that regularized OLS gives better prediction accuracy than OLS model, mainly because we selecte all 108 IVs (nearly equals 140, the number of train sets). Thus, the trained model meet the overfitting problem, and LASSO solve it well.

Conclusion

  • When there are many attributes, be alarm as the traditional Regression model may meet overfitting problem(However, other models such as Decision Tree, Random Forest, Gradient Boosting and so on can solve it easily)
  • We have to strike a balance between variance and (inductive) bias: our model needs to have sufficient complexity to model the relationship between the predictors and the response, but it must not fit the idiosyncrasies of our training data.
  • Idiosyncrasies which limit the model's ability to generalize (as measured by the testing error).

Further more

We can try various models (such as XGBoost Model, Support Vector Machine, Random Forest, ...) on this dataset, and let's leave it as this blog's homework.

Reference

Predict Referendum by sklearn package的更多相关文章

  1. sklearn pipeline

    sklearn.pipeline pipeline的目的将许多算法模型串联起来,比如将特征提取.归一化.分类组织在一起形成一个典型的机器学习问题工作流. 优点: 1.直接调用fit和predict方法 ...

  2. 探索sklearn | K均值聚类

    1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ...

  3. 跟 Google 学 machineLearning [1] -- hello sklearn

    时至今日,我才发现 machineLearning 的应用门槛已经被降到了这么低,简直唾手可得.我实在找不到任何理由不对它进入深入了解.如标题,感谢 Google 为这项技术发展作出的贡献.当然,可能 ...

  4. sklearn—LinearRegression,Ridge,RidgeCV,Lasso线性回归模型简单使用

    线性回归 import sklearnfrom sklearn.linear_model import LinearRegression X= [[0, 0], [1, 2], [2, 4]] y = ...

  5. 机器学习总结-sklearn参数解释

    本文转自:lytforgood 机器学习总结-sklearn参数解释 实验数据集选取: 1分类数据选取 load_iris 鸢尾花数据集 from sklearn.datasets import lo ...

  6. sklearn调用分类算法的评价指标

    sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdf ...

  7. 机器学习实战 | SKLearn最全应用指南

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...

  8. 用scikit-learn和pandas学习线性回归

    对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...

  9. IRIS数据集的分析-数据挖掘和python入门-零门槛

    所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.co ...

随机推荐

  1. 关于Eureka客户端连接服务端报错问题Cannot execute request on any known server

    对于Eureka包这个错误问题:Cannot execute request on any known server,总的原因就是连接Eureka连接服务端的Url地址不对,Url地址不对很很多情况. ...

  2. vue 使用

    [1_01 vue的双向绑定] [1_02 Vue Slot] [vue实例属性template不能使用] [vue-property-decorator 提供 OO 的风格 Vue Componen ...

  3. ADB——命令大全

    基本语法 基本语法 adb [-d|-e|-s <serialNumber>] <command> # serialNumber表示设备序列号,也可以是ip地址 # 如果只有一 ...

  4. 【jdbc访问数据库获取执行sql转换json】

    Talk is cheap.Show me your code. import java.sql.*; import java.util.HashMap; import java.util.Map; ...

  5. spring batch (二) 元数据表

    内容来自<Spring Batch 批处理框架>,作者:刘相. 一.spring batch 框架进行元数据管理共有六张表,三张SEQUENCE用来分配主键的,九张表分别是: BATCH_ ...

  6. (转)Centos下,Docker部署Yapi接口管理平台

    接口测试的工具很多,公司引进了接口管理平台Yapi,自己尝试直接搭建,从安装Nodejs到配置MongoDB数据库,再到安装yapi的时候,遇到浏览器打开本地服务器Ip地址后,没有显示部署内容...没 ...

  7. 将pucharm与anaconda配合使用

    一个用来更新各种包,另一个负责美美的打代码,把pycharm, setting  project interpreter,选中anaconda中的python.exe.搞定.anaconda prom ...

  8. Javascript扩展String.prototype实现格式金额、格式时间、字符串连接、计算长度、是否包含、日期计算等功能

    <script src="Js/jquery-3.1.1.min.js"></script> <script type="text/java ...

  9. 【论文速读】Yuliang Liu_2017_Detecting Curve Text in the Wild_New Dataset and New Solution

    Yuliang Liu_2017_Detecting Curve Text in the Wild_New Dataset and New Solution 作者和代码 caffe版代码 关键词 文字 ...

  10. Windows 10 关闭Hyper-V

    以管理员身份运行命令提示符 关闭 bcdedit /set hypervisorlaunchtype off 启用 bcdedit / set hypervisorlaunchtype auto 禁用 ...