题意

给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列。

每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值。

\(2 \le n \le 10^5, 2 \le k \le \min(n, 20), 1 \le a_i \le n\)

题解

\(k\) 比较小,可以先考虑一个暴力 \(dp\) 。

令 \(dp_{k, i}\) 为前 \(i\) 个数划分成 \(k\) 段所需要的最小花费。

那么转移如下

\[dp_{k, i} = \min_{j \le i} dp_{k - 1, j - 1} + w_{j, i}
\]

其中 \(w_{j, i}\) 为 \(j \sim i\) 这段划分出来需要的花费,也就是 \([j, i]\) 区间内相同元素对数。

暴力做是 \(O(n^2 k)\) 的,无法通过。

说到最优区间划分,我就想起了决策单调性,今年下半年

至于为什么满足决策单调?考虑证明 \(\mathrm{1D/1D}\) 上的 四边形不等式。具体证明可以参考此处

我们现在只有一个问题了, 就是如何快速求出 \(w_{j, i}\) 。

可以考虑把序列分块,然后预处理块到块的答案以及点到一个块的答案,然后再算算边角。

然后这个配合 二分+单调栈 可以做到 \(O(nk \sqrt n \log n)\) ,还是过不去。

对于这种分层 \(dp\) 来说,分治的复杂度就可以正确,因为每次不需要先分治左区间再算右区间,可以扫完整个区间得到 \(mid\) 的最优决策点,然后就可以把 \([l, mid)\) 和 \((mid, r]\) 的决策点分开了。

这样单次求解的话,每层是 \(O(n)\) 的,那么复杂度是 \(O(n \log n)\) 的。

然后此时我们就可以很好的算 \(w_{j, i}\) 了,要怎么算呢?

可以暴力一点做,考虑类似莫队那样维护当前计算区间的 \([l, r]\) ,然后看接下来要算的 \([l', r']\) 的相对位置,就可以得到相应的区间的花费了。

复杂度?其实是对的。具体原因可以参考非指针移动的那种做法,每次只会移动当前区间长度的指针。

这个其实是一样的,因为每次需要利用的相邻两个区间是一样的,这种移动方法的复杂度是平面上两点的曼哈顿距离,显然不会更劣。

那么最后复杂度就是 \(O(nk \log n)\) 的,似乎我的写法跑的挺快?

代码

很好写啊qwq

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; typedef long long ll; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("F.in", "r", stdin);
freopen ("F.out", "w", stdout);
#endif
} const int N = 2e5 + 1e3; int n, k, a[N], times[N]; int l, r; ll res, dp[25][N]; void Move(int L, int R) {
while (l > L) res += times[a[-- l]] ++;
while (l < L) res -= -- times[a[l ++]];
while (r > R) res -= -- times[a[r --]];
while (r < R) res += times[a[++ r]] ++;
} void Divide(int k, int l, int r, int dl, int dr) {
if (l > r) return;
int mid = (l + r) >> 1, dmid = dl;
dp[k][mid] = 0x3f3f3f3f3f3f3f3f;
For (i, dl, min(mid, dr)) {
Move(i, mid);
if (chkmin(dp[k][mid], dp[k - 1][i - 1] + res)) dmid = i;
}
Divide(k, l, mid - 1, dl, dmid);
Divide(k, mid + 1, r, dmid, dr);
} int main () { File(); n = read(); k = read(); For (i, 1, n) a[i] = read(); For (i, 1, n)
dp[1][i] = (res += times[a[i]] ++);
res = 0; Set(times, 0); l = 1; r = 0;
For (i, 2, k) Divide(i, 1, n, 1, n);
printf ("%lld\n", dp[k][n]); return 0; }

CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)的更多相关文章

  1. Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)

    Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...

  2. CF868 F. Yet Another Minimization Problem 决策单调优化 分治

    目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...

  3. Codeforces 868F. Yet Another Minimization Problem

    Description 给出一个长度为 \(n\) 的序列,你需要将它分为 \(k\) 段,使得每一段的价值和最小,每一段的价值是这一段内相同的数的个数 题面 Solution 容易想到设 \(f[i ...

  4. Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】

    LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(d ...

  5. Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)

    题目链接  Yet Another Minimization Problem 题意  给定一个序列,现在要把这个序列分成k个连续的连续子序列.求每个连续子序列价值和的最小值. 设$f[i][j]$为前 ...

  6. cf868F. Yet Another Minimization Problem(决策单调性 分治dp)

    题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...

  7. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  8. 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)

    洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...

  9. [bzoj1563][NOI2009]诗人小G(决策单调性优化)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1563 分析: 首先可得朴素的方程:f[i]=min{f[j]+|s[j]-j-s[i] ...

随机推荐

  1. arcgis api 3.x for js 入门开发系列八聚合效果(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  2. 最简单打开三星note8三星galaxy susb调试模式的方法

    每当我们使用安卓手机连接PC的时候,如果手机没有开启usb调试模式,PC则无办法成功检测到我们的手机,部分APP也无办法正常使用,这时我们需要找处理方法将手机的usb调试模式开启,以下内容我们介绍三星 ...

  3. 系统前端基本文件+ajax部分理解

    静态页面: 一.static: css dist fonts images js model 二.templates: html ajax搜索操作: <html> <head> ...

  4. sqlserver常用数据类型(精炼版)

    一:系统数据类型 2.浮点数据类型 3.字符数据类型 4.日期和时间数据类型 5.文本和图形数据类型 6.货币数据类型 7.位数据类型 8.二进制数据类型 9.其他数据类型 二:自定义数据类型   数 ...

  5. Redis数据库云端最佳技术实践

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 邹鹏,腾讯高级工程师,腾讯云数据库Redis负责人,多年数据库.网络安全研发经验. ...

  6. Asp.Net Core 下 Newtonsoft.Json 转换字符串 null 替换成string.Empty

    public class NullToEmptyStringResolver : DefaultContractResolver { /// <summary> /// 创建属性 /// ...

  7. Python中的一些小技巧

    1.Boolean值可以当做一个数值 a = [5,6,7,8,9] print(a[True]) #prints 6 print(a[False]) #prints 5 2.两种方法实现 a = 1 ...

  8. IDF-简单题目writeup

    1. 被改错的密码 原题: 从前有一个熊孩子入侵了一个网站的[数据库],找到了管理员密码,手一抖在[数据库]中修改了一下,现在的密码变成了ca9cc444e64c8116a30la00559c042b ...

  9. webApi 验证basic-authentication认证的资源的各种语言的实现

    HTTP Basic authentication (BA) 是一个基于http请求的,简单验证.详细资料:https://en.wikipedia.org/wiki/Basic_access_aut ...

  10. SpringBoot四大神器之Actuator

    介绍 Spring Boot有四大神器,分别是auto-configuration.starters.cli.actuator,本文主要讲actuator.actuator是spring boot提供 ...