进程PCB
struct task_struct {
volatile long state; //说明了该进程是否可以执行,还是可中断等信息
unsigned long flags; //Flage 是进程号,在调用fork()时给出
intsigpending; //进程上是否有待处理的信号
mm_segment_taddr_limit; //进程地址空间,区分内核进程与普通进程在内存存放的位置不同
//0-0xBFFFFFFF foruser-thead
//0-0xFFFFFFFF forkernel-thread
//调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
volatilelong need_resched;
int lock_depth; //锁深度
longnice; //进程的基本时间片
//进程的调度策略,有三种,实时进程:SCHED_FIFO 1 先进先出,SCHED_RR 2 基于优先权的轮转法,分时进程:SCHED_OTHER 0 用基于优先权的轮转法
unsigned long policy;
struct mm_struct *mm; //进程内存管理信息
int processor;
//若进程不在任何CPU上运行, cpus_runnable 的值是0,否则是1这个值在运行队列被锁时更新
unsigned long cpus_runnable, cpus_allowed;
struct list_head run_list; //指向运行队列的指针
unsigned longsleep_time; //进程的睡眠时间
//用于将系统中所有的进程连成一个双向循环链表,其根是init_task
struct task_struct *next_task, *prev_task;
struct mm_struct *active_mm;
struct list_headlocal_pages; //指向本地页面
unsigned int allocation_order, nr_local_pages;
struct linux_binfmt *binfmt; //进程所运行的可执行文件的格式
int exit_code, exit_signal;
intpdeath_signal; //父进程终止是向子进程发送的信号
unsigned longpersonality;
//Linux可以运行由其他UNIX操作系统生成的符合iBCS2标准的程序
intdid_exec:;
pid_tpid; //进程标识符,用来代表一个进程
pid_tpgrp; //进程组标识,表示进程所属的进程组
pid_t tty_old_pgrp; //进程控制终端所在的组标识
pid_tsession; //进程的会话标识
pid_t tgid;
intleader; //表示进程是否为会话主管
struct task_struct*p_opptr,*p_pptr,*p_cptr,*p_ysptr,*p_osptr;
struct list_head thread_group; //线程链表
struct task_struct*pidhash_next; //用于将进程链入HASH表
struct task_struct**pidhash_pprev;
wait_queue_head_t wait_chldexit; //供wait4()使用
struct completion*vfork_done; //供vfork()使用
unsigned long rt_priority; //实时优先级,用它计算实时进程调度时的weight值 //it_real_value,it_real_incr用于REAL定时器,单位为jiffies,系统根据it_real_value
//设置定时器的第一个终止时间.在定时器到期时,向进程发送SIGALRM信号,同时根据
//it_real_incr重置终止时间,it_prof_value,it_prof_incr用于Profile定时器,单位为jiffies。
//当进程运行时,不管在何种状态下,每个tick都使it_prof_value值减一,当减到0时,向进程发送
//信号SIGPROF,并根据it_prof_incr重置时间.
//it_virt_value,it_virt_value用于Virtual定时器,单位为jiffies。当进程运行时,不管在何种
//状态下,每个tick都使it_virt_value值减一当减到0时,向进程发送信号SIGVTALRM,根据
//it_virt_incr重置初值。
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_value;
struct timer_listreal_timer; //指向实时定时器的指针
struct tmstimes; //记录进程消耗的时间
unsigned longstart_time; //进程创建的时间
//记录进程在每个CPU上所消耗的用户态时间和核心态时间
longper_cpu_utime[NR_CPUS],per_cpu_stime[NR_CPUS];
//内存缺页和交换信息:
//min_flt, maj_flt累计进程的次缺页数(Copyon Write页和匿名页)和主缺页数(从映射文件或交换
//设备读入的页面数);nswap记录进程累计换出的页面数,即写到交换设备上的页面数。
//cmin_flt, cmaj_flt,cnswap记录本进程为祖先的所有子孙进程的累计次缺页数,主缺页数和换出页面数。
//在父进程回收终止的子进程时,父进程会将子进程的这些信息累计到自己结构的这些域中
unsignedlong min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:; //表示进程的虚拟地址空间是否允许换出
//进程认证信息
//uid,gid为运行该进程的用户的用户标识符和组标识符,通常是进程创建者的uid,gid
//euid,egid为有效uid,gid
//fsuid,fsgid为文件系统uid,gid,这两个ID号通常与有效uid,gid相等,在检查对于文件
//系统的访问权限时使用他们。
//suid,sgid为备份uid,gid
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups; //记录进程在多少个用户组中
gid_t groups[NGROUPS]; //记录进程所在的组
//进程的权能,分别是有效位集合,继承位集合,允许位集合
kernel_cap_tcap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:;
struct user_struct *user;
struct rlimit rlim[RLIM_NLIMITS]; //与进程相关的资源限制信息
unsigned shortused_math; //是否使用FPU
charcomm[]; //进程正在运行的可执行文件名
//文件系统信息
int link_count, total_link_count;
//NULL if no tty进程所在的控制终端,如果不需要控制终端,则该指针为空
struct tty_struct*tty;
unsigned int locks;
//进程间通信信息
struct sem_undo*semundo; //进程在信号灯上的所有undo操作
struct sem_queue *semsleeping; //当进程因为信号灯操作而挂起时,他在该队列中记录等待的操作
//进程的CPU状态,切换时,要保存到停止进程的task_struct中
structthread_struct thread;
//文件系统信息
struct fs_struct *fs;
//打开文件信息
struct files_struct *files;
//信号处理函数
spinlock_t sigmask_lock;
struct signal_struct *sig; //信号处理函数
sigset_t blocked; //进程当前要阻塞的信号,每个信号对应一位
struct sigpendingpending; //进程上是否有待处理的信号
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
u32 parent_exec_id;
u32 self_exec_id; spinlock_t alloc_lock;
void *journal_info;
};
struct task_struct
{
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
/*
表示进程的当前状态:
TASK_RUNNING:正在运行或在就绪队列run-queue中准备运行的进程,实际参与进程调度。
TASK_INTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,也可由其它进程通过信号(signal)或定时中断唤醒后进入就绪队列run-queue。
TASK_UNINTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,不可由其它进程通过信号(signal)或定时中断唤醒。
TASK_ZOMBIE:表示进程结束但尚未消亡的一种状态(僵死状态)。此时,进程已经结束运行且释放大部分资源,但尚未释放进程控制块。
TASK_STOPPED:进程被暂停,通过其它进程的信号才能唤醒。导致这种状态的原因有二,或者是对收到SIGSTOP、SIGSTP、SIGTTIN或SIGTTOU信号的反应,或者是受其它进程的ptrace系统调用的控制而暂时将CPU交给控制进程。
TASK_SWAPPING: 进程页面被交换出内存的进程。
*/
unsigned long flags; //进程标志,与管理有关,在调用fork()时给出
int sigpending; //进程上是否有待处理的信号
mm_segment_t addr_limit; //进程地址空间,区分内核进程与普通进程在内存存放的位置不同
/*用户线程空间地址: 0..0xBFFFFFFF。
内核线程空间地址: 0..0xFFFFFFFF */ struct exec_domain *exec_domain; //进程执行域
volatile long need_resched; //调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
unsigned long ptrace;
int lock_depth; //锁深度
long counter; //进程的基本时间片,在轮转法调度时表示进程当前还可运行多久,在进程开始运行是被赋为priority的值,以后每隔一个tick(时钟中断)递减1,减到0时引起新一轮调 度。重新调度将从run_queue队列选出counter值最大的就绪进程并给予CPU使用权,因此counter起到了进程的动态优先级的作用
long nice; //静态优先级
unsigned long policy; //进程的调度策略,有三种,实时进程:SCHED_FIFO,SCHED_RR,分时进程:SCHED_OTHER
//在Linux 中, 采用按需分页的策略解决进程的内存需求。task_struct的数据成员mm 指向关于存储管理的mm_struct结构。
struct mm_struct *mm; //进程内存管理信息
int has_cpu, processor;
unsigned long cpus_allowed;
struct list_head run_list; //指向运行队列的指针
unsigned long sleep_time; //进程的睡眠时间
//用于将系统中所有的进程连成一个双向循环链表,其根是init_task
//在Linux 中所有进程(以PCB 的形式)组成一个双向链表,next_task和prev_task是链表的前后向指针
struct task_struct *next_task, *prev_task;
struct mm_struct *active_mm; //active_mm 指向活动地址空间。
struct linux_binfmt *binfmt; //进程所运行的可执行文件的格式
int exit_code, exit_signal;
int pdeath_signal; //父进程终止是向子进程发送的信号
unsigned long personality;
int dumpable:;
int did_exec:;
pid_t pid; //进程标识符,用来代表一个进程
pid_t pgrp; //进程组标识,表示进程所属的进程组
pid_t tty_old_pgrp; //进程控制终端所在的组标识
pid_t session; //进程的会话标识
pid_t tgid;
int leader; //表示进程是否为会话主管
<br> //指向最原始的进程任务指针,父进程任务指针,子进程任务指针,新兄弟进程任务指针,旧兄弟进程任务指针。
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
struct list_head thread_group; //线程链表
<br> //用于将进程链入HASH表,系统进程除了链入双向链表外,还被加入到hash表中
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;
wait_queue_head_t wait_chldexit; //供wait4()使用
struct semaphore *vfork_sem; //供vfork()使用
unsigned long rt_priority; //实时优先级,用它计算实时进程调度时的weight值
<br> //it_real_value,it_real_incr用于REAL定时器,单位为jiffies,系统根据it_real_value
//设置定时器的第一个终止时间.在定时器到期时,向进程发送SIGALRM信号,同时根据
//it_real_incr重置终止时间,it_prof_value,it_prof_incr用于Profile定时器,单位为jiffies。
//当进程运行时,不管在何种状态下,每个tick都使it_prof_value值减一,当减到0时,向进程发送信号SIGPROF,并根据it_prof_incr重置时间.
//it_virt_value,it_virt_value用于Virtual定时器,单位为jiffies。当进程运行时,不管在何种
//状态下,每个tick都使it_virt_value值减一当减到0时,向进程发送信号SIGVTALRM,根据it_virt_incr重置初值
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer; //指向实时定时器的指针
struct tms times; //记录进程消耗的时间
unsigned long start_time; //进程创建的时间
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];//记录进程在每个CPU上所消耗的用户态时间和核心态时间
//内存缺页和交换信息:
//min_flt, maj_flt累计进程的次缺页数(Copyon Write页和匿名页)和主缺页数(从映射文件或交换
//设备读入的页面数);nswap记录进程累计换出的页面数,即写到交换设备上的页面数。
//cmin_flt, cmaj_flt,cnswap记录本进程为祖先的所有子孙进程的累计次缺页数,主缺页数和换出页面数。
//在父进程回收终止的子进程时,父进程会将子进程的这些信息累计到自己结构的这些域中
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:; //表示进程的虚拟地址空间是否允许换出
//进程认证信息
//uid,gid为运行该进程的用户的用户标识符和组标识符,通常是进程创建者的uid,gid,euid,egid为有效uid,gid
//fsuid,fsgid为文件系统uid,gid,这两个ID号通常与有效uid,gid相等,在检查对于文件系统的访问权限时使用他们。
//suid,sgid为备份uid,gid
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups; //记录进程在多少个用户组中
gid_t groups[NGROUPS]; //记录进程所在的组
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;//进程的权能,分别是有效位集合,继承位集合,允许位集合
int keep_capabilities:;
struct user_struct *user; //代表进程所属的用户
struct rlimit rlim[RLIM_NLIMITS]; //与进程相关的资源限制信息
unsigned short used_math; //是否使用FPU
char comm[]; //进程正在运行的可执行文件名
//文件系统信息
int link_count;
struct tty_struct *tty; //进程所在的控制终端,如果不需要控制终端,则该指针为空
unsigned int locks; /* How many file locks are being held */
//进程间通信信息
struct sem_undo *semundo; //进程在信号量上的所有undo操作
struct sem_queue *semsleeping; //当进程因为信号量操作而挂起时,他在该队列中记录等待的操作
struct thread_struct thread; //进程的CPU状态,切换时,要保存到停止进程的task_struct中
struct fs_struct *fs; //文件系统信息,fs保存了进程本身与VFS(虚拟文件系统)的关系信息
struct files_struct *files; //打开文件信息
//信号处理函数
spinlock_t sigmask_lock; /* Protects signal and blocked */
struct signal_struct *sig; //信号处理函数
sigset_t blocked; //进程当前要阻塞的信号,每个信号对应一位
struct sigpending pending; //进程上是否有待处理的信号
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
spinlock_t alloc_lock; //用于申请空间时用的自旋锁。自旋锁的主要功能是临界区保护 };
进程PCB的组织方式:线性表、索引表、链接表
二,进程控制块(PCB)
进程控制块包括:
进程描述信息:
- 进程标识符用于唯一的标识一个进程(pid,ppid)。
进程控制信息:
- 进程当前状态
- 进程优先级
- 程序开始地址
- 各种计时信息
- 通信信息
资源信息:
- 占用内存大小及管理用数据结构指针
- 交换区相关信息
- I/O设备号、缓冲、设备相关的数结构
- 文件系统相关指针
现场保护信息(cpu进行进程切换时):
- 寄存器
- PC
- 程序状态字PSW
- 栈指针
进程标识:PID
- 每个进程都会分配到一个独一无二的数字编号,我们称之为“进程标识”(process identifier),或者就直接叫它PID.
- 是一个正整数,取值范围从2到32768
可以通过:cat /proc/sys/kernel/pid_max 查看系统支持多少进程
- 当一个进程被启动时,它会顺序挑选下一个未使用的编号数字做为自己的PID
- 数字1一般为特殊进程init保留的
init进程实际上是用户进程,它是一个程序,在/sbin/init,linux启动的第一个进程
实际上linux中还存在0号进程(内核进程),它是一个空闲进程,它进行空闲资源的统计及交换空间的换入换出,1(init)进程是由0号进程创建的。
三,进程创建
- 不同的操作系统所提供的进程创建原语的名称和格式不尽相同,但执行创建进程原语后,操作系统所做的工作却大致相同,都包括以下几点:
- 给新创建的进程分配一个内部标识(pcb),在内核中建立进程结构。
- 复制父进程的环境
- 为进程分配资源, 包括进程映像所需要的所有元素(程序、数据、用户栈等),
- 复制父进程地址空间的内容到该进程地址空间中。
- 置该进程的状态为就绪,插入就绪队列。
四,进程撤销
进程终止时操作系统做以下工作:
- 关闭软中断:因为进程即将终止而不再处理任何软中断信号;
- 回收资源:释放进程分配的所有资源,如关闭所有已打开文件,释放进程相应的数据结构等;
- 写记帐信息:将进程在运行过程中所产生的记帐数据(其中包括进程运行时的各种统计信息)记录到一个全局记帐文件中;
- 置该进程为僵死状态:向父进程发送子进程死的软中断信号,将终止信息status送到指定的存储单元中;
- 转进程调度:因为此时CPU已经被释放,需要由进程调度进行CPU再分配。
五,终止进程的五种方法
- 从main函数返回:从return返回,执行完毕退出
- 调用exit:C函数库,实际上也是调用系统调用_exit完成的,在任何一个函数调用exit函数都可使得进程撤销
- 调用_exit:系统调用
- 调用abort:调用abort()函数使得进程终止,实际上该函数是产生一个SIGABRT信号,
- 由信号终止:发送一些信号如SINGINT等信号
进程PCB的更多相关文章
- 进程 PCB 进程挂起
7-1 进程定义 OS系统从只能跑一个程序到能跑多个.进程可以描述程序的执行过程. 进程:一个具有一定独立功能的程序在一个数据集合上的一次动态执行过程. 只有当一个程序被OS加载到内存中,cpu对其 ...
- 进程控制块(PCB)
用来描述和控制进程的运行的一个数据结构--进程控制块PCB(Process Control Block),是进程实体的一部分,是操作系统中最重要的记录型数据结构. PCB是进程存在的唯一标志 系统能且 ...
- Linux下的进程控制块(PCB)
本文转载自Linux下的进程控制块(PCB) 导语 进程在操作系统中都有一个户口,用于表示这个进程.这个户口操作系统被称为PCB(进程控制块),在linux中具体实现是 task_struct数据结构 ...
- 实验二 用C语言表示进程的调度
实验二 一. 实验目的 通过模拟进程的调度,进一步了解进程的调度的具体过程. 二. 实验内容和要求 1.进程PCB的结构体定义 2.定义队列 3.输入进程序列 4.排序(按到位时间) 5.输出进程运行 ...
- 分析Linux内核创建一个新进程的过程
一.原理分析 1.进程的描述 进程控制块PCB——task_struct,为了管理进程,内核必须对每个进程进行清晰的描述,进程描述符提供了内核所需了解的进程信息. struct task_struct ...
- 《Linux内核分析》第六周 进程的描述与创建
[刘蔚然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK SIX(3 ...
- 20135220谈愈敏Blog6_进程的描述和创建
进程的描述和创建 谈愈敏 原创作品转载请注明出处 <Linux内核分析>MOOC课程 http://mooc.study.163.com/course/USTC-1000029000 进程 ...
- 操作系统:进程管理和IO控制
一.进程管理 进程管理包括进程控制,进程调度,进程同步与通信,死锁控制四个内容. (一)进程控制 进程是操作系统中运行的基本单位,包括程序段,数据段和进程控制段.操作系统通过进程控制块(PCB)管理进 ...
- linux第1天 fork exec 守护进程
概念方面 文件是对I/O设备的抽象表示.虚拟存储器是对主存和磁盘I/O设备的抽象表示.进程则是对处理器.主存和I/O设备的抽象表示 中断 早期是没有进程这个概念,当出现中断技术以后才出现进程这个概念 ...
随机推荐
- docker 中安装 redis
使用以下命令在Docker Hub搜索Redis镜像docker search redis 使用以下命令拉取镜像,Redis的镜像docker pull redis:latest 使用以下命令查看,本 ...
- 《BUG创造队》第一次作业:团队亮相
项目 内容 这个作业属于哪个课程 2016级软件工程 这个作业的要求在哪里 第五次实验 团队名称 BUG创造队 作业学习目标 通过本次项目了解并熟悉团队开发的过程 关于我们 -我们的队名:BUG创造队 ...
- Java并发编程相关知识整理
1.什么是进程.线程.多线程? 进程当一个程序开始运行时,它就是一个进程,进程包括运行中的程序和程序所使用到的内存和系统资源.进程间通讯依靠IPC资源,例如管道.套接字 线程是程序中的 ...
- 微信小程序页面跳转导航wx.navigateTo和wx.redirectTo
}) wx.redirectTo(OBJECT) 关闭当前页面,跳转到应用内的某个页面. 还是用上面的三张图示作为例子,当使用wx.redirctTo接口跳转页面时,原来的页面将被删除掉,当然,这是小 ...
- oracle中delete、truncate、drop的区别 (转载)
一.delete 1.delete是DML,执行delete操作时,每次从表中删除一行,并且同时将该行的的删除操作记录在redo和undo表空间中以便进行回滚(rollback)和重做操作,但要注意表 ...
- C# 使用密码连接Redis
单个Redis客户端: // 以StackOverflow.Redis的开源项目为例 ConnectionMultiplexer redis = ConnectionMultiplexer.Conne ...
- Qt 适合做界面
确实感觉的Qt的界面开发相比MFC方便了许多,不用为设计和实现窗口烦恼.不需要太细研究界面的实现,从Qt自带的例子中就能轻松学习和应用.在界面开发上Qt的实用比MFC前进了许多.做C++开发不管怎样如 ...
- c# Winfrom窗体事件中启用多线程 并用子线程修改窗体里面的属性
昨天一个朋友问我一个问题,需求是 this.textBox1.Text = "睡眠前"; Thread.Sleep(1000); this.textBox1.Text = &quo ...
- .NET快速开发平台免费版预发布
自己团队开发的一套软件,可通过配置完成列表.表单.流程等的快速开发,因项目原因有一段时间没更新了,准备发出来希望能帮助更多企业快速实现信息化. 该软件主要应用的技术有如下: 1.存储:采用SqlSer ...
- React中this.setState是同步还是异步?为什么要设计成异步?
在使用react的时候,this.setState为什么是异步呢? 一直以来没有深思这个问题.昨天就此问题搜索了一下. react创始人之一 Dan Abramovgaearon在GitHub上回答了 ...