For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi  ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

Input

* Line 1: Four space-separated integers: N, T, S, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

Output

* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

Sample Input

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

Sample Output

10

题意:求过s,t两点的刚好经过k条边的最短路
思路:任意最短路可以想到Floyd,(01矩阵的乘积A^k中,A[i][j]代表刚好经过k条边的从i到j的数量)
maps【i】【j】 为 经过一条边的最短路, 对于maps【i】【k】 + maps【k】【j】 可以看出是经过两条边的最短路
那么对于
r+m == k 且 A为经过r条边的最短路,B为经过m条边的最短路,通过maps【i】【k】+maps【k】【j】就得到了刚好经过k条边的最短路
 #include<cstdio>
#include<iostream>
#include<cstring>
using namespace std; int n,k,m,s,t;
int has[];
struct matrix
{
int maps[][];
matrix operator *(const matrix &x)const
{
matrix c;
memset(c.maps,0x3f,sizeof(c.maps));
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
c.maps[i][j] = min(c.maps[i][j],maps[i][k]+x.maps[k][j]);
}
}
}
return c;
}
}; matrix qpow(matrix a,int k)
{
matrix ans = a;
k--;
while(k)
{
if(k&)ans = ans * a;
a = a*a;
k >>= ;
}
return ans;
}
int main()
{
while(~scanf("%d%d%d%d",&k,&m,&s,&t))
{
int tot=;
matrix ans;
memset(ans.maps,0x3f,sizeof(ans.maps));
for(int i=;i<=m;i++)
{
int w,x,y;
scanf("%d%d%d",&w,&x,&y);
if(!has[x])
{
has[x] = ++tot;
}
if(!has[y])
{
has[y] = ++tot;
}
if(w < ans.maps[has[x]][has[y]])
{
ans.maps[has[x]][has[y]] = ans.maps[has[y]][has[x]] = w;
}
}
n = tot;
ans = qpow(ans,k);
printf("%d\n",ans.maps[has[s]][has[t]]);
}
}

Cow Relays POJ - 3613 (floyd+快速幂)的更多相关文章

  1. poj 3613 floyd + 快速幂

    题意:本题的大意就是问从S 到 T 经过边得个数恰为k的最短路是多少. 思路:对于邻接矩阵每一次floyd求的是每个点间的最短距离,则n次floyd就是每个点间n条路的最短距离(可以重复边); 但是由 ...

  2. POJ 3613 Cow Relays(floyd+快速幂)

    http://poj.org/problem?id=3613 题意: 求经过k条路径的最短路径. 思路: 如果看过<矩阵乘法在信息学的应用>这篇论文就会知道 现在我们在邻接矩阵中保存距离, ...

  3. poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7825   Accepted: 3068 Descri ...

  4. POJ 3613 floyd+矩阵快速幂

    题意: 求s到e恰好经过n边的最短路 思路: 这题已经被我放了好长时间了. 原来是不会矩阵乘法,快速幂什么的也一知半解 现在终于稍微明白了点了 其实就是把矩阵乘法稍微改改 改成能够满足结合律的矩阵&q ...

  5. poj 1995 裸快速幂

    1. poj 1995  Raising Modulo Numbers 2.链接:http://poj.org/problem?id=1995 3.总结:今天七夕,来发水题纪念一下...入ACM这个坑 ...

  6. POJ3613 Cow Relays [矩阵乘法 floyd类似]

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7335   Accepted: 2878 Descri ...

  7. poj 3233 矩阵快速幂

    地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方  结果模m的相加和是多少 Given a n × n matrix A and a positive i ...

  8. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  9. poj 3734 矩阵快速幂+YY

    题目原意:N个方块排成一列,每个方块可涂成红.蓝.绿.黄.问红方块和绿方块都是偶数的方案的个数. sol:找规律列递推式+矩阵快速幂 设已经染完了i个方块将要染第i+1个方块. a[i]=1-i方块中 ...

随机推荐

  1. centos7修改网卡名称为eth0

    原文链接:https://www.cnblogs.com/freeblogs/p/7881597.html 在安装系统的时候配置: 修改内核选项:net.ifnames=0 biosdevname=0 ...

  2. BZOJ3864: Hero meet devil(dp套dp)

    Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 397  Solved: 206[Submit][Status][Discuss] Description ...

  3. 分布式追踪系统sleauth+zipkin

  4. ansible基本使用方法

    一.ansible的运行流程 ansible是基于ssh模块的软件,所以主控端和被控端的ssh服务必须正常才能保证ansbile软件的可用性. 检查ssh服务是否正常:   systemctl sta ...

  5. 第十三节:实际开发中使用最多的监视锁Monitor、lock语法糖的扩展、混合锁的使用(ManualResetEvent、SemaphoreSlim、ReaderWriterLockSlim)

    一. 监视锁(Monitor和lock) 1. Monitor类,限定线程个数的一把锁,两个核心方法: Enter:锁住某个资源. Exit:退出某一个资源. 测试案例:开启5个线程同时对一个变量进行 ...

  6. KL散度

    摘自: https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 一.解决的问题 量化两种概率分布P和Q可以使 ...

  7. 5.CentOS7安装mariadb

    MariaDB 和 MySQL 使用是一样的,二者只要安装一个就行了 MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可.开发这个分支的原因之一是:甲骨文公司 ...

  8. (三)微信小程序首页的分类功能和搜索功能的实现笔记

    就在昨天,微信宣布了微信小程序开发者工具新增“云开发”功能 下载最新的开发者工具,现在无需服务器即可实现小程序的快速迭代! 分类功能和搜索功能的效果图 1.首页分类功能的实现 boxtwo方法(.js ...

  9. 2018-2019-1 20165234 实现mypwd

    实现mypwd(选做,加分) 1 学习pwd命令 2 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 3 实现mypwd 4 测试mypwd 提交过程博客的链接

  10. ARM 处理器:RISC与CISC 是什么?【转】

    转自:https://blog.csdn.net/willsun2017/article/details/83388990 完全看懂 ARM 处理器:RISC与CISC 是什么? 历史.架构一次看透 ...