例1

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
rx1 = np.array([54.52, 55.14, 55.80, 56.43, 57.08, 57.71, 58.35, 58.97, 59.61, 60.25]) #纵坐标
t1 = np.linspace(20.5, 47.5, 10) #横坐标
a = stats.linregress(t1, rx1) #求线性回归方程
k = a[0] #斜率
b = a[1] #截距
plt.rcParams['font.sans-serif'] = ['SimHei'] #使中文能正常显示
plt.rcParams['axes.unicode_minus'] = False #使符号能正常显示
plt.rcParams['font.size'] = 16 #改变字体大小
plt.figure(figsize=(12, 6)) #改变图片大小
plt.grid(True) #显示网格
plt.plot(t1, rx1, 'k-o') #画图:穿过点的折线
plt.title(u'铜电阻阻值与温度曲线图(惠斯通电桥)') #标题
plt.xlabel('t(℃)') #横坐标说明
plt.ylabel('$R_X$(Ω)') #纵坐标说明(一对$之间是Tex表达式)
for i in zip(t1, rx1):
plt.text(i[0], i[1], str(i[1]), ha='right', va='bottom') #给点加上数据
plt.show() #显示图片

例2

import numpy as np
from scipy import stats
from scipy import interpolate
import matplotlib.pyplot as plt def xxdz():
u1 = np.array([0.23, 0.5, 0.75, 1.01, 1.25, 1.51, 1.75])
i1 = np.array([2.2, 4.6, 6.8, 9.7, 12.0, 14.7, 17.0])
k1, b1, *_ = stats.linregress(u1, i1)
x1 = np.linspace(0, max(u1), 1000)
u2 = np.array([0.23, 0.5, 0.75, 1, 1.26, 1.51, 1.75])
i2 = np.array([2.2, 4.8, 7.8, 10.0, 12.8, 15.5, 18.0])
k2, b2, *_ = stats.linregress(u2, i2)
x2 = np.linspace(0, max(u2), 1000)
plt.scatter(u1, i1, c='k', marker='^', label='内接法') #画点
plt.scatter(u2, i2, c='k', marker='o', label='外接法')
plt.plot(x1, k1 * x1 + b1, 'k', label='内接法')
plt.plot(x2, k2 * x2 + b2, 'k--', label = '外接法')
plt.title('测量线性电阻的伏安特性')
plt.xticks(np.linspace(0, 1.8, 10)) #设置坐标轴的刻度
plt.yticks(np.linspace(0, 20, 11))
plt.xlabel('U/V')
plt.ylabel('I/mA')
plt.legend() def bdtejg():
u1 = np.array([0.238, 0.426, 0.670, 0.740, 0.782, 0.810, 0.830, 0.852, 0.874, 0.885])
i1 = np.array([0.0, 0.0, 0.1, 1.2, 4.5, 9.0, 13.2, 18.8, 24.8, 28.5])
u2 = -np.array([2.5, 4.02, 4.1, 4.22, 4.51, 4.7, 4.76, 4.8, 4.84, 4.87])
i2 = -np.array([0.00, 0.1, 0.18, 0.28, 0.85, 2.03, 3.5, 5.88, 8.33, 12.18])
u3 = np.concatenate((u2, u1)) #对两组数据进行连接
i3 = np.concatenate((i2, i1))
f = interpolate.interp1d(u3, i3, kind='cubic') #获得三次方插值函数以平滑曲线
xnew = np.linspace(min(u3), max(u3), 1000); #平滑曲线时用到的经细分后的x坐标
plt.plot(xnew, f(xnew), 'k')
plt.scatter(u3, i3, c='k', marker='o')
plt.title('半导体二极管2CW52的正反向伏安特性曲线')
plt.xticks(np.linspace(-5, 1, 11))
plt.yticks(np.linspace(-15, 30, 10))
plt.xlabel('U/V')
plt.ylabel('I/mA') def jtsjg():
u1 = np.array([0.00, 0.1, 0.26, 0.52, 0.9, 1.5, 2.24, 2.76, 3.38, 4.00, 4.54, 5.0])
i1 = np.array([0.0, 5.09, 9.25, 9.4, 9.51, 9.6, 9.8, 9.91, 10.05, 10.09, 10.35, 10.4])
f1 = interpolate.interp1d(u1, i1, kind='linear') #获得线性(更高次会过拟合)插值函数以平滑曲线
u2 = np.array([0.0, 0.1, 0.15, 0.24, 0.4, 1.22, 1.9, 2.4, 3.2, 3.93, 4.51, 5.00])
i2 = np.array([0.0, 6.8, 11.6, 13.2, 13.8, 14.1, 14.4, 14.7, 15.0, 15.3, 15.6, 15.8])
f2 = interpolate.interp1d(u2, i2, kind='linear')
u3 = np.array([0.0, 0.05, 0.1, 0.16, 0.55, 1.1, 1.85, 2.43, 2.87, 3.3, 3.8, 5])
i3 = np.array([0.0, 4.4, 10.3, 14.7, 18.3, 18.6, 19.3, 19.7, 20, 20.3, 20.6, 21])
f3 = interpolate.interp1d(u3, i3, kind='linear')
xnew = np.linspace(0, 5, 1000)
plt.plot(xnew, f1(xnew), 'k', label='40μA')
plt.plot(xnew, f2(xnew), 'k--', label='60μA')
plt.plot(xnew, f3(xnew), 'k-.', label='80μA')
plt.scatter(u1, i1, c='k', marker='o')
plt.scatter(u2, i2, c='k', marker='o')
plt.scatter(u3, i3, c='k', marker='o')
plt.title('晶体三极管的输出特性曲线')
plt.xticks(np.linspace(0, 5, 11))
plt.yticks(np.linspace(0, 22, 12))
plt.xlabel('$U_{ce}$/V')
plt.ylabel('$I_c$/mA')
plt.legend()
print(f1(3.5))
print(f2(3.5))
print(f3(3.5)) plt.rcParams['font.sans-serif'] = ['SimHei'] #使中文能正常显示
plt.rcParams['axes.unicode_minus'] = False #使符号能正常显示
plt.rcParams['font.size'] = 16 #改变字体大小
plt.figure(figsize=(12, 6)) #改变图片大小
plt.grid(True) #显示网格
ax = plt.gca() #获得坐标轴
ax.spines['right'].set_color('none') #隐藏右边框和上边框
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position(('data', 0)) #把坐标轴移到(0, 0)
ax.spines['left'].set_position(('data', 0))
jtsjg()
plt.show()

用matplotlib画简单折线图示例的更多相关文章

  1. 可视化数据matplotlib之安装与简单折线图

    matplotlib是一个可视化数据的模块,安装前需要先安装Visual Studio Community:然后去https://pypi.python.org/pypi上查找matplotlib并下 ...

  2. Matplotlib学习---用matplotlib画箱线图(boxplot)

    箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分 ...

  3. matplotlib的使用--折线图--入门

    目录 matplotlib应用介绍 一天天气变化图 两小时随机温度图 中文显示问题 个人交往统计图 多人交往统计图 总结 介绍: 举个例子(一天天气变化图): 假设一天中每隔两个小时(range(2, ...

  4. matplotlib(二):折线图

    import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates # 解决中文显示问题 plt. ...

  5. Python学习-使用matplotlib画动态多图

    最近常常使用matplotlib进行数学函数图的绘制,可是怎样使用matplotlib绘制动态图,以及绘制动态多图.直到今天才学会. 1.參考文字 首先感谢几篇文字的作者.帮我学会了怎样绘制.大家也能 ...

  6. 玩转html5(二)----用canvas结合脚本在画布上画简单的图(html5又一强大功能)

    在html5中可以使用canvas标签在画布上画图,先直接上代码,这篇文章先简单介绍一下canvas的使用方法,简单画几个圆,矩形,三角形,写字. 在代码中均给出了注释,在这里特别强调的一点是:使用c ...

  7. Matplotlib学习---用matplotlib画直方图/密度图(histogram, density plot)

    直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://d ...

  8. 使用python内置库matplotlib,实现折线图的绘制

    环境准备: 需要安装matplotlib,安装方式: pip install matplotlib 直接贴代码喽: #引入模块 from matplotlib import pyplot,font_m ...

  9. python中matplotlib画折线图实例(坐标轴数字、字符串混搭及标题中文显示)

    最近在用python中的matplotlib画折线图,遇到了坐标轴 "数字+刻度" 混合显示.标题中文显示.批量处理等诸多问题.通过学习解决了,来记录下.如有错误或不足之处,望请指 ...

随机推荐

  1. (四)log4j同配置下多个进程写日志

    原文链接:https://blog.csdn.net/voiceofwind/article/details/51966361 由于起了两个不同的任务,log4j中用的是一套配置,写入的是同一个路径, ...

  2. 关联函数-web_save_param_length

    int web_save_param_length(const char * Param,const char * Base,LAST); 参数说明: Param:保存长度的参数的名称. Base:参 ...

  3. C# 9.0 新特性之目标类型推导 new 表达式

    阅读本文大概需要 2 分钟. 呼~~,每次过完一个周末,写作就失去了动力,一两天才能缓过来.尽管如此,还是要坚持写好每一篇文章的.宁缺毋滥嘛,宁愿发文的频率低一点,也要保证文章的质量,至少排版不能差, ...

  4. ubuntu启动打开终端快捷键

    ubuntu启动打开终端快捷键 CTRL+ALT+T

  5. cb38a_c++_STL_算法_transform

    cb38a_c++_STL_算法_transformtransform()算法有两种形式:transform(b1,e1,b2,op);//b1(源区间)的数据通过op函数处理,存放在b2(目标区间) ...

  6. Eplan PLC连接点模块为什么不显示“路径功能文本”,已解决

    Eplan PLC连接点模块为什么不显示“路径功能文本”,已解决 如果“路径功能文本”的文字开头的位置没有对准PLC模块的中心,PLC连接点模块就不会显示.

  7. 学习Linux必须掌握的一个知识-i节点

    linux文件系统是Linux系统的心脏部分,提供了层次结构的目录和文件.文件系统将磁盘空间划分为每1024个字节一组,称为块(也有用512字节为一块的,如:SCOXENIX).编号从0到整个磁盘的最 ...

  8. JavaWeb网上图书商城完整项目--day02-14.登录功能的login页面处理

    1.现在注册成功之后,我们来到登录页面,登录页面在于 在登录页面.我们也需要向注册页面一样对登录的用户名.密码 验证码等在jsp页面中进行校验,校验我们单独放置一个login.js文件中进行处理,然后 ...

  9. leetcode 6 z字型变换

    执行用时 :64 ms, 在所有 Python3 提交中击败了99.74%的用户由题目可知 我们的最终字符串会被摆成 numRows 行,那我们理解为 最终结果是numRows个字符串相加 先建立等于 ...

  10. max depth exceeded when dereferencing c0-param0问题的解决

    在做项目的时候,用到了dwr,有一次居然报错,错误是 max depth exceeded when dereferencing c0-param0 上网查了一下,我居然传参数的时候传的是object ...