Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 43274   Accepted: 14716

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle. 

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std; const int MAXN =1010;
const double PI= acos(-1.0);
//精度
double eps=1e-8;
//避免出现-0.00情况,可以在最后加eps
//精度比较
int sgn(double x)
{
if(fabs(x)<=eps)return 0;
if(x<0)return -1;
return 1;
} //点的封装
struct Point
{
double x,y;
Point (){}
//赋值
Point (double _x,double _y)
{
x=_x;
y=_y;
}
//点相减
Point operator -(const Point &b)const
{
return Point (x-b.x,y-b.y);
}
//点积
double operator *(const Point &b)const
{
return x*b.x+y*b.y;
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
} ; //线的封装
struct Line
{
Point s,e;
Line (){}
Line (Point _s,Point _e)
{
s=_s;
e=_e;
}
//平行和重合判断 相交输出交点
//直线相交和重合判断,不是线段,
Point operator &(const Line &b)const{
Point res=b.s;
if(sgn((e-s)^(b.e-b.s))==0)
{
if(sgn((e-s)^(e-b.e))==0)
{
//重合
return Point(0,0);
}
else
{
//平行
return Point(0,0);
}
}
double t=((e-s)^(s-b.s))/((e-s)^(b.e-b.s));
res.x+=(b.e.x-b.s.x)*t;
res.y+=(b.e.y-b.s.y)*t;
return res;
}
}; //向量叉积
double xmult(Point p0,Point p1,Point p2)
{
return (p0-p1)^(p2-p1);
} //线段和线段非严格相交,相交时true
//此处是线段
bool seg_seg(Line l1,Line l2)
{
return sgn(xmult(l1.s,l2.s,l2.e)*xmult(l1.e,l2.s,l2.e))<=0&&sgn(xmult(l2.s,l1.s,l1.e)*xmult(l2.e,l1.s,l1.e))<=0;
} //两点之间的距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} //极角排序;对100个点进行极角排序
int pos;//极点下标
Point p[MAXN];
int Stack[MAXN],top;
bool cmp(Point a,Point b)
{
double tmp=sgn((a-p[pos])^(b-p[pos]));//按照逆时针方向进行排序
if(tmp==0)return dist(a,p[pos])<dist(b,p[pos]);
if(tmp<0)return false ;
return true;
}
void Graham(int n)
{
Point p0;
int k=0;
p0=p[0];
for(int i=1;i<n;i++)//找到最左下边的点
{
if(p0.y>p[i].y||(sgn(p0.y-p[i].y))==0&&p0.x>p[i].x)
{
p0=p[i];
k=i;
}
}
swap(p[k],p[0]);
sort(p+1,p+n,cmp);
if(n==1)
{
top=2;
Stack[0]=0;
return ;
}
if(n==2)
{
top=2;
Stack[0]=0;
Stack[1]=1;
return ;
}
Stack[0]=0;Stack[1]=1;
top=2;
for(int i=2;i<n;i++)
{
while(top>1&&sgn((p[Stack[top-1]]-p[Stack[top-2]])^(p[i]-p[Stack[top-2]]))<=0)
top--;
Stack[top++]=i;
}
} int main ()
{
int n,l;
cin>>n>>l;
for(int i=0;i<n;i++)
cin>>p[i].x>>p[i].y;
Graham(n);
double sum=0;
for(int i=0;i<top-1;i++)
sum+=dist(p[Stack[i]],p[Stack[i+1]]);
sum+=dist(p[Stack[top-1]],p[Stack[0]]);
sum+=PI*2*l;
sum=(sum)*10/10;
printf("%.f\n",sum);
return 0;
}

poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)的更多相关文章

  1. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  2. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  3. POJ 1113 Wall 凸包求周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26286   Accepted: 8760 Description ...

  4. POJ 1113 - Wall 凸包

    此题为凸包问题模板题,题目中所给点均为整点,考虑到数据范围问题求norm()时先转换成double了,把norm()那句改成<vector>压栈即可求得凸包. 初次提交被坑得很惨,在GDB ...

  5. POJ 1113 Wall(思维 计算几何 数学)

    题意 题目链接 给出平面上n个点的坐标.你需要建一个围墙,把所有的点围在里面,且围墙距所有点的距离不小于l.求围墙的最小长度. \(n \leqslant 10^5\) Sol 首先考虑如果没有l的限 ...

  6. POJ 1087 最大流裸题 + map

    A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15597   Accepted: 5308 ...

  7. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  8. POJ 1113 Wall 求凸包的两种方法

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31199   Accepted: 10521 Descriptio ...

  9. POJ 1113 Wall 求凸包

    http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...

随机推荐

  1. Head First 设计模式 —— 13. 代理 (Proxy) 模式

    思考题 如何设计一个支持远程方法调用的系统?你要怎样才能让开发人员不用写太多代码?让远程调用看起来像本地调用一样,毫无瑕疵? P435 已经接触过 RPC 了,所以就很容易知道具体流程:客户端调用目标 ...

  2. sort方法和sorted()函数

    sort方法和sorted()函数的区别: 相同点:都能完成排序操作. 不同点: (1)使用sort()方法对list排序会修改list本身,不会返回新list,sort()不能对dict字典进行排序 ...

  3. zookeeper读取事务日志、快照日志

    zookeeper的事务日志的格式如 log.xxx, xxx表示顺序序号 我使用的zookeeper版本:3.5.5 事务日志 执行命令 java -cp .:/tmp/zookeeper-3.5. ...

  4. 日常采坑:.NetCore上传大文件

    一..NetCore上传大文件 .NetCore3.1 webapi 本地测试上传时,遇到一个坑,大点的文件直接失败,根本不走控制器方法. 二.大文件上传配置 IFormFile方式,vs IIS E ...

  5. Neo4j 图数据库查询

    Cypher 介绍 Cypher 介绍:作为Neo4j的查询语言,"Cypher"是一个描述性的图形查询语言,允许不必编写图形结构的遍历代码对图形存储有表现力和效率的查询.Cyph ...

  6. 纯原生javascript下拉框表单美化实例教程

    html的表单有很强大的功能,在web早期的时候,表单是页面向服务器发起通信的主要渠道.但有些表单元素的样式没办法通过添加css样式来达到满意的效果,而且不同的浏览器之间设置的样式还存在兼容问题,比如 ...

  7. 【MySQL】centos6中/etc/init.d/下没有mysqld启动文件,怎么办

    如果/etc/init.d/下面没有mysqld的话,service mysqld start也是不好使的,同样,chkconfig mysqld on也是不能用 解决办法: 将mysql的mysql ...

  8. python sqlite3增加表字段

    给sqlite3表格增加新字段,要注意大小写,要不然不成功. 一开始这样写,不成功! 后面规范写,按大小写严格规范写! 成功了!现在查看新增加的字段commit: 仔细看,这下全部小写,括表名称.co ...

  9. 使用ogg实现oracle到postgresql表的实时同步

    参考:https://docs.oracle.com/goldengate/c1221/gg-winux/index.html https://blog.51cto.com/hbxztc/188071 ...

  10. 避免用using包装DbContext【翻译】

    EF和EF Core 的DbContext类实现IDisposable接口.因此,很多最佳编程实践中都建议你将它们放在一个using()块中.不幸的是,至少在Web应用程序中,这样做通常不是一个好主意 ...