P1108 低价购买(DP)
题目描述
“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内一支股票每天的出售价(2162^{16}216范围内的正整数),你可以选择在哪些天购买这支股票。每次购买都必须遵循“低价购买;再低价购买”的原则。写一个程序计算最大购买次数。
这里是某支股票的价格清单:
日期 1,2,3,4,5,6,7,8,9,10,11,12 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8, 9 ,10 ,11, 121,2,3,4,5,6,7,8,9,10,11,12
价格68,69,54,64,68,64,70,67,78,62,98,87 68 ,69 ,54, 64,68 ,64 ,70 ,67 ,78 ,62, 98, 8768,69,54,64,68,64,70,67,78,62,98,87
最优秀的投资者可以购买最多444次股票,可行方案中的一种是:
日期 2,5,6,10 2 , 5 , 6 ,102,5,6,10
价格 69,68,64,62 69, 68 ,64 ,6269,68,64,62
输入输出格式
输入格式:
第1行: N(1≤N≤5000)N(1 \le N \le 5000)N(1≤N≤5000),股票发行天数
第2行: NNN个数,是每天的股票价格。
输出格式:
两个数:
最大购买次数和拥有最大购买次数的方案数(≤231 \le 2^{31}≤231)当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这222种方案被认为是相同的。
输入输出样例
题解:
注意这不是LIS,因为它还要求出来方案数,而LIS的DP数组里面只是求出来了以dp[i]以第i个数结尾的LIS,而且这道题还要求我们去重<_>
因此我参考了一下别人的博客https://wjyyy.blog.luogu.org/solution-p1108
- 如果一个数列的第一个数与另一个数列的第一个数相同,那么现在可以判断它们相等,即可以把其中一个删掉(在代码中的处理是t[i]=0t[i]=0t[i]=0)。当不同的数接在它的后面时,又可以将它们判断为两个数列,这是不互相影响的。因为两个数列都可以由这个相等的数列转移而来
- 如果一个数列的第一个数与另一个数列的第一个数不同,那么它们不等,且无论后面添加什么,都不相等,即不删去,则按照普通的判断继续做。
由上面的两点,我们已经把重复的删掉,这样可以防止重复计数。
tiptiptip:本题如果出现在考试中,请不要冒险定义int,因为maxint是231−12^{31}-1231−1,会爆int,这个题暂不做深究
上代码:
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 const int maxn=1000005;
7 int v[maxn],dp[maxn],t[maxn];
8 int main()
9 {
10 int n,m,maxx=0;
11 scanf("%d",&n);
12 m=n;
13 for(int i=1;i<=n;++i)
14 scanf("%d",&v[m--]);
15 for(int i=1;i<=n;++i)
16 {
17 dp[i]=1;
18 for(int j=1;j<i;++j)
19 {
20 if(v[j]<v[i] && dp[j]+1>dp[i])
21 dp[i]=dp[j]+1;
22 }
23 maxx=max(maxx,dp[i]);
24
25 for(int j=1;j<i;++j)
26 {
27 if(dp[j]==dp[i] && v[j]==v[i])
28 t[j]=0;
29 else if(dp[j]+1==dp[i] && v[j]<v[i])
30 t[i]+=t[j];
31 }
32 if(!t[i]) t[i]=1;
33 }
34 int sum=0;
35 for(int i=1;i<=n;++i)
36 {
37 if(dp[i]==maxx)
38 sum+=t[i];
39 }
40 printf("%d %d\n",maxx,sum);
41 }
P1108 低价购买(DP)的更多相关文章
- P1108 低价购买 (DP)
题目 P1108 低价购买 解析 这题做的我身心俱惫,差点自闭. 当我WA了N发后,终于明白了这句话的意思 当二种方案"看起来一样"时(就是说它们构成的价格队列一样的时候),这2种 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- Luogu P1108 低价购买 DP
第一问求最长下降子序列,不提: 第二问:借鉴了最短路的方法??? 我们求出来了每个位置的最长下降子序列的长度,那么刻意这样这样转移 if f[i]==f[j]+1&&a[i]<a ...
- 洛谷 P1108 低价购买 解题报告
P1108 低价购买 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买&quo ...
- 洛谷 P1108 低价购买
P1108 低价购买 标签 动态规划 难度 提高+/省选- 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:& ...
- P1108 低价购买——最长下降子序列+方案数
P1108 低价购买 最长下降子序列不用多讲:关键是方案数: 在求出f[i]时,我们可以比较前面的f[j]; 如果f[i]==f[j]&&a[i]==a[j] 要将t[j]=0,去重: ...
- 低价购买 dp
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷P1108 低价购买
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 题解——P1108低价购买(DP)
第一问是最长下降子序列,n很小,n^2可过,注意最长下降子序列的枚举顺序即可 ;i<=n;i++)//不要写错 ;j<i;j++)//不要打成<= ) b[i]=b[j]+; 第二问 ...
随机推荐
- 面试官:你真的了解Redis分布式锁吗?
什么是分布式锁 说到Redis,我们第一想到的功能就是可以缓存数据,除此之外,Redis因为单进程.性能高的特点,它还经常被用于做分布式锁. 锁我们都知道,在程序中的作用就是同步工具,保证共享资源在同 ...
- .NET Core引入日志(Log4Net篇)
Demo版本信息如下: VS:2019 框架:.Net Core 3.1 Log4Net:2.0.12 思维导图: [1]添加依赖项 通过nuget添加Log4Net [2]创建公共类 添加公共类Lo ...
- 通用寄存器_MOV_ADD_SUB_AND_OR_NOT
通用寄存器 MOV指令 注意:目标操作数与操作数宽度必须一样 MOV 目标操作数,源操作数 作用:拷贝源操作数到目标操作数 1.源操作数可以是立即数.通用寄存器.段寄存器.或者内存单元. 2.目标操作 ...
- Trollcave-suid提权
一 扫描端口 扫描开放端口:nmap -sV -sC -p- 192.168.0.149 -oA trollcave-allports 扫描敏感目录:gobuster dir -u http://19 ...
- 【葵花宝典】一天掌握Docker
第1章Docker 概述 1-1 Docker是什么 没有虚拟化技术的原始年代 我们仔细想想,在没有计算虚拟化技术的"远古"年代,如果我们要部署一个应用程序(Application ...
- Development desciptor
概述与作用: 部署描述符是用于描述Web应用程序的元数据,并为Java EE Web应用程序服务器部署和运行Web应用程序提供指令.从传统上来说,所有元数据都来自于部署描述符文件/WEB-INF/we ...
- SEO大杀器rendertron安装
前段时间做SEO的优化,使用的是GoogleChrome/rendertron,发现这个安装部署的时候还是会有一些要注意的地方,做个记录 为什么要使用rendertron 目前很多网站都是使用 vue ...
- 导出exe的经验
安装pyinstaller 首先要找到scripts的绝对路径(主要是找到scripts就行了 先是安装C:\Users\96290\AppData\Local\Programs\Python\Pyt ...
- Mybatis【15】-- Mybatis一对一多表关联查询
注:代码已托管在GitHub上,地址是:https://github.com/Damaer/Mybatis-Learning ,项目是mybatis-11-one2one,需要自取,需要配置maven ...
- 使用Linux服务器来通过网络安装和激活Windows 7 —— 一些基本原理
使用Linux服务器来通过网络安装和激活Windows 7 -- 一些基本原理 https://www.pufengdu.org/blog/?p=372