Social Infrastructure Information Systems Division, Hitachi Programming Contest 2020 C题题解
首先,我们将题目理解成若\(i\)与\(j\)距离恰好为\(3\),则不可能\(p_i \equiv p_j \equiv 1 \space or \space 2 (\bmod 3)\)。这就相当于我们要构造一个大小为\([\frac{n + 1}{3}]\)的点集\(A_2\),用来放所有模3余2的数,再构造一个大小为\([\frac{n + 2}{3}]\)的点集\(A_1\),用来放所有模3余1的数。需要满足这两个集合交集为空,且若\(i\)与\(j\)距离为\(3\),则它们不在同一个集合内。
发现距离为\(3\)的点连成的图性质是不好的,唯一好的性质就是:它是二分图。我们不妨大胆地把条件加强为:构造这样的点集\(A_1, A_2\),使得它们全部再二分图的同一边。
我们把树按深度奇偶染色,不妨设染一种颜色的点数为\(X\),另一种为\(Y\),且\(X \leq Y\)。
若\(X \ge [\frac{n + 1}{3}]\)且\(Y \ge [\frac{n + 2}{3}]\),我们就在\(X\)中任意取\([\frac{n + 1}{3}]\)个点作为\(A_2\),在\(Y\)中任意取\([\frac{n + 2}{3}]\)个点作为\(A_1\)即可。
否则我们容易证明\(Y \ge [\frac{n + 1}{3}] + [\frac{n + 2}{3}]\),在\(Y\)中任意找两个集合的点即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N = 200005;
template <class T>
void read (T &x) {
int sgn = 1;
char ch;
x = 0;
for (ch = getchar(); (ch < '0' || ch > '9') && ch != '-'; ch = getchar()) ;
if (ch == '-') ch = getchar(), sgn = -1;
for (; '0' <= ch && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
x *= sgn;
}
template <class T>
void write (T x) {
if (x < 0) putchar('-'), write(-x);
else if (x < 10) putchar(x + '0');
else write(x / 10), putchar(x % 10 + '0');
}
struct edge {
int to, nxt;
} tree[N << 1];
int n, col[N], head[N], perm[N], cnt = 0, cnt0 = 0, cnt1 = 0;
void addedge (int u, int v) {
edge e = {v, head[u]};
tree[head[u] = cnt++] = e;
}
void dfs (int u, int fa) {
for (int i = head[u]; ~i; i = tree[i].nxt) {
int v = tree[i].to;
if (v != fa) {
col[v] = col[u] ^ 1;
dfs(v, u);
}
}
}
int main () {
read(n);
for (int i = 1; i <= n; i++) head[i] = -1;
for (int i = 1; i < n; i++) {
int u, v;
read(u), read(v);
addedge(u, v), addedge(v, u);
}
col[1] = 0, dfs(1, 0);
for (int i = 1; i <= n; i++) {
if (col[i] == 0) cnt0++;
else cnt1++;
}
if (cnt0 > cnt1) {
for (int i = 1; i <= n; i++) col[i] ^= 1;
swap(cnt0, cnt1);
}
int bound0 = n / 3, bound1 = (n + 1) / 3, bound2 = (n + 2) / 3;
if (cnt0 >= bound1 && cnt1 >= bound2) {
int tot0 = 0, tot1 = 0, tot2 = 0;
for (int i = 1; i <= n; i++) {
if (col[i] == 0) {
if (tot2 >= bound1) perm[i] = 3 * ++tot0;
else perm[i] = 3 * ++tot2 - 1;
}
else {
if (tot1 >= bound2) perm[i] = 3 * ++tot0;
else perm[i] = 3 * ++tot1 - 2;
}
}
}
else {
int tot0 = 0, tot1 = 0, tot2 = 0;
for (int i = 1; i <= n; i++) {
if (col[i] == 0) perm[i] = 3 * ++tot0;
else {
if (tot1 < bound2) perm[i] = 3 * ++tot1 - 2;
else if (tot2 < bound1) perm[i] = 3 * ++tot2 - 1;
else perm[i] = 3 * ++tot0;
}
}
}
for (int i = 1; i <= n; i++) write(perm[i]), putchar(' ');
putchar('\n');
return 0;
}
Social Infrastructure Information Systems Division, Hitachi Programming Contest 2020 C题题解的更多相关文章
- Social Infrastructure Information Systems Division, Hitachi Programming Contest 2020 D题题解
将题意转换为一开始\(t = 0\),第\(i\)个操作是令\(t \leftarrow (a_i + 1) t + (a_i + b_i + 1)\).记\(A_i = a_i + 1, B_i = ...
- HHKB Programming Contest 2020 D - Squares 题解(思维)
题目链接 题目大意 给你一个边长为n的正方形和边长为a和b的正方形,要求把边长为a和b的正方形放在长度为n的正方形内,且没有覆盖(可以相邻)求有多少种放法(mod 1e9+7) 题目思路 这个思路不是 ...
- (寒假开黑gym)2018 ACM-ICPC, Syrian Collegiate Programming Contest(爽题)
layout: post title: (寒假开黑gym)2018 ACM-ICPC, Syrian Collegiate Programming Contest(爽题) author: " ...
- M-SOLUTIONS Programming Contest 2020 题解
M-SOLUTIONS Programming Contest 2020 题解 目录 M-SOLUTIONS Programming Contest 2020 题解 A - Kyu in AtCode ...
- 2021.7.27--Benelux Algorithm Programming Contest 2020 补提
I Jigsaw 题目内容: 链接:https://ac.nowcoder.com/acm/contest/18454/I 来源:牛客网 You have found an old jigsaw pu ...
- Yahoo Programming Contest 2019 补题记录(DEF)
D - Ears 题目链接:D - Ears 大意:你在一个\(0-L\)的数轴上行走,从整数格出发,在整数格结束,可以在整数格转弯.每当你经过坐标为\(i-0.5\)的位置时(\(i\)是整数),在 ...
- 2017 ACM Arabella Collegiate Programming Contest div2的题,部分题目写个题解
F. Monkeying Around 维护点在多少个线段上 http://codeforces.com/gym/101350/problem/F 题意:有m个笑话,每个笑话的区间是[L, R], ...
- 带权并查集:CF-2015 ACM Arabella Collegiate Programming Contest(F题)
F. Palindrome Problem Description A string is palindrome if it can be read the same way in either di ...
- atcoder Keyence Programming Contest 2020 题解
比赛地址 A 题意:给一个\(n*m\)的初始为白色的矩阵,一次操作可以将一行或一列染成 黑色,问至少染出\(k\)个黑点的最少操作次数. \(n\),\(m\)<=100,\(k\)<= ...
随机推荐
- centos使用U盘做启动盘
软件下载地址: http://sourceforge.net/projects/iso2usb/files/latest/download?source=dlp 写于: 2014年08月04日 更新于 ...
- RTSP服务端开发概述
一 概述 RTSP(Real Time Streaming Protocol),RFC2326,实时音视频流传输协议,是TCP/IP协议体系中的一个应用层协议.该协议定义了一对多应用程序如何有效地通过 ...
- wireshark实战应用(长期更新,工作随笔)
Wireshark检索语法 过滤IP地址 ip.addr eq 192.168.1.1 ip.addr == 192.168.1.1 //过滤源IP地址 ip.src eq 192.168.1.1 i ...
- go返回json数据
package main import ( "encoding/json" ) type Repay struct { Code uint64 `json:"code&q ...
- 怎么让我们的mac运行得更加流畅?让我们得工作事半功倍!
古语云:"工欲善其事,必先利其器."因此,一个运行流畅的Mac更能使我们的工作事半功倍.但又是什么导致电脑的运行不流畅呢? 其实这大多还是缓存垃圾过多.内存不足的原因.尝试安装了许 ...
- zabbix 监控文件夹
安装inotify wget http://github.com/downloads/rvoicilas/inotify-tools/inotify-tools-3.14.tar.gz tar -zx ...
- python截取视频制作动态表情包+文字
1:安装moviepy库 2:安装IPython库 代码如下: from moviepy.editor import * from IPython.display import Image def B ...
- web文件上传漏洞
什么是文件上传漏洞? 指利用系统的对文件上传部分的控制不足或处理缺陷,上传可执行的动态脚本文件/webShell进行攻击行为. 原因 对于上传文件的后缀名(扩展名)没有做较为严格的限制 对于上传文件的 ...
- MarkDown使用之LaTeX表示数学公式
对于文本排版格式,对于\(Microsoft\,Word\)来说,功能尽全,可调的参数十分多,人们可能会将不少的时间放在具体的文字大小.实现样式.而\(markdown\)语法能够让人们通过符号去替代 ...
- django搭建
1.进入终端使用虚拟环境安装---pip install django==2.2 2.创建新的工程django-admin startproject bookpro 3.创建app或模块 使用djan ...