HDU5739 Fantasia

题意:

给出一张\(N\)个点的无向图\(G\),每个点都有权值\(w_i\),要求计算\(\sum_{i=1}^{N}i\cdot G_i % 1e9+7\)

其中\(G_i\)为删掉点\(i\)之后剩下各连通块内点权乘积之和

题解:

显然对于不是割点的点很容易计算出答案

对于割点,我们需要知道删掉这个点之后产生的新的连通块的点权乘积和

\(tarjan\)过程中可以直接处理出各联通子图的点权乘积(除了父节点所在的子图)

而父节点所在子图的点权乘积可以用整张图的点权乘积去除掉除它以外的点的点权乘积

具体实现看代码

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
typedef long long int LL;
const int MAXN = 2e5+7;
const LL MOD = 1e9+7;
int n,m,bccid[MAXN],dfn[MAXN],low[MAXN],ID,w[MAXN],bel[MAXN],idx;
vector<int> G[MAXN],pt[MAXN];
LL tot,ans,f[MAXN],gw[MAXN],mul[MAXN],subsum[MAXN],submul[MAXN];
bool iscut[MAXN];
LL ksm(LL a, LL b){
LL ret = 1;
while(b){
if(b&1) ret = ret * a % MOD;
b >>= 1;
a = a * a % MOD;
}
return ret;
}
LL inv(LL x){ return ksm(x,MOD-2); }
void init(){
for(int i = 1; i <= n; i++) G[i].clear();
memset(dfn+1,0,n<<2);
memset(bel+1,0,n<<2);
memset(iscut+1,0,n);
fill(submul+1,submul+1+n,1);
fill(subsum+1,subsum+1+n,0);
ans = tot = ID = idx = 0;
}
void tarjan(int u, int par, int id){
pt[id].push_back(u);
bel[u] = id;
dfn[u] = low[u] = ++idx;
mul[id] = mul[id] * w[u] % MOD;
int child = 0;
for(int v : G[u]){
if(v==par) continue;
if(!dfn[v]){
child++;
LL tmp = mul[ID];
tarjan(v,u,id);
low[u] = min(low[u],low[v]);
if(low[v]>=dfn[u]){
if(par) iscut[u] = true;
LL sub = mul[ID] * inv(tmp) % MOD;
// 由于不确定根节点是否是割点,所以先当作割点来处理
subsum[u] = (subsum[u] + sub) % MOD;
submul[u] = submul[u] * sub % MOD;
}
}
else low[u] = min(low[u],dfn[v]);
}
if(!par and child > 1) iscut[u] = true;
}
void solve(){
scanf("%d %d",&n,&m);
init();
for(int i = 1; i <= n; i++) scanf("%d",&w[i]);
for(int i = 1; i <= m; i++){
int u, v; scanf("%d %d",&u,&v);
G[u].push_back(v); G[v].push_back(u);
}
for(int i = 1; i <= n; i++) if(!dfn[i]){
pt[++ID].clear();
mul[ID] = 1;
tarjan(i,0,ID);
tot = (tot + mul[ID]) % MOD;
for(int x : pt[ID]){
if(x==i) continue;
subsum[x] = (subsum[x] + mul[ID] * inv(submul[x]*w[x]%MOD) % MOD) % MOD;
}
}
for(int i = 1; i <= n; i++){
LL res = 0;
if(iscut[i]) res = (tot - mul[bel[i]] + subsum[i] + MOD) % MOD;
else{
if(pt[bel[i]].size() == 1) res = (tot - w[i] + MOD) % MOD;
else res = (tot - mul[bel[i]] + mul[bel[i]] * inv(w[i]) % MOD + MOD) % MOD;
}
ans = (ans + i * res) % MOD;
}
printf("%I64d\n",ans);
}
int main(){
int tt;
for(scanf("%d",&tt); tt; tt--) solve();
return 0;
}

HDU5739 Fantasia【点双连通分量 割点】的更多相关文章

  1. poj 1523 SPF(双连通分量割点模板)

    题目链接:http://poj.org/problem?id=1523 题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块. 题目分析:割点用tarjan算法求出来,对于每个割点 ...

  2. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  3. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  4. (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

  5. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  6. Tarjan算法求解无向连通图的割点、割边、点双连通分量和边双连通分量的模板

    历时好几天,终于完工了! 支持无向图四种功能:1.割点的求解 2.割边的求解 3.点双连通分量的求解 4.边双连通分量的求解 全部支持重边!!!!全部支持重边!!!!全部支持重边!!!! 测试数据: ...

  7. CF487 E. Tourists [点双连通分量 树链剖分 割点]

    E. Tourists 题意: 无向连通图 C a w: 表示 a 城市的纪念品售价变成 w. A a b: 表示有一个游客要从 a 城市到 b 城市,你要回答在所有他的旅行路径中最低售价的最低可能值 ...

  8. 图论-桥/割点/双连通分量/缩点/LCA

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

  9. Tarjan算法初探(3):求割点与桥以及双连通分量

    接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...

随机推荐

  1. 【详细】Python基础(一)

    @ 目录 前言 1. Python环境的搭建 1.1 python解释器的安装 1.2 pycharm的安装 2. Python基础语法 2.1 基本语法 2.2 数据类型 2.3 标识符与关键字 2 ...

  2. vue中选中弹出框内的表格

    一:可多选情况且对应勾选 由于是弹出框形式,所以会出现新增DOM与数据的改变问题,因此要使用$nextTick,不然一开始弹出得时候DOM还没有生成,却要获取DOM会报错:这种多选情况会出现一个bug ...

  3. (二)React Ant Design Pro + .Net5 WebApi:前端环境搭建

    首先,你需要先装一个Nodejs,这是基础哦.如果没有这方面知识的小伙伴可以在园子里搜索cnpm yarn等关键字,内容繁多,此不赘述,参考链接 一. 简介 1. Ant Design Pro v5 ...

  4. Java开发手册之安全规约

    1.用户敏感数据禁止直接展示,必须对展示数据进行脱敏.例如手机号.银行卡号等,中间要用*隐藏. 2.发贴.评论.发送即时消息等用户生成内容的场景必须实现防刷.文本内容违禁词过滤等风控策略,一般是用验证 ...

  5. MySQL select 语句指定字段查询

    指定字段查询 SELECT 语法 SELECT [ALL | DISTINCT] {* | table.* | [table.field1[as alias1][,table.field2[as al ...

  6. 【Linux】md5sum 生产所有文件的md5值,并对照目标文件是否相同

    现在加入有很多很多文件需要测试md5,想看下是否都传输成功了,如何批量生成文件的md5并且逐条对照呢? 下面来简单介绍下 md5sum这个命令有一个选项"-c" 这个选项的意思是c ...

  7. kubernets之Ingress资源

    一  Ingress集中式的kubernets服务转发控制器 1.1  认识Ingress的工作原理 注意:图片来源于kubernets in action一书,如若觉得侵权,请第一时间联系博主进行删 ...

  8. XEE - Pikachu

    概述 XXE -"xml external entity injection"既"xml外部实体注入漏洞".概括一下就是"攻击者通过向服务器注入指定的 ...

  9. 创建Django REST framework工程

    1.创建工程虚拟环境 2.创建工程目录和调整目录结构: 创建Django的项目 创建docs 用于存放一些说明文档资料 创建scripts 用于存放管理脚本文件 创建logs 用于存在日志 在与项目同 ...

  10. Java中,那些关于String和字符串常量池你不得不知道的东西

    老套的笔试题 在一些老套的笔试题中,会要你判断s1==s2为false还是true,s1.equals(s2)为false还是true. String s1 = new String("xy ...