Intersection of Two Prisms(AOJ 1313)
- 原题如下:
Suppose that P1 is an infinite-height prism whose axis is parallel to the z-axis, and P2 is also an infinite-height prism whose axis is parallel to the y-axis. P1 is defined by the polygon C1 which is the cross section of P1 and the xy-plane, and P2is also defined by the polygon C2 which is the cross section of P2 and the xz-plane.
Figure I.1 shows two cross sections which appear as the first dataset in the sample input, and Figure I.2 shows the relationship between the prisms and their cross sections.
Figure I.1: Cross sections of Prisms
Figure I.2: Prisms and their cross sections
Figure I.3: Intersection of two prisms
Figure I.3 shows the intersection of two prisms in Figure I.2, namely, P1 and P2.
Write a program which calculates the volume of the intersection of two prisms.
Input
The input is a sequence of datasets. The number of datasets is less than 200.
Each dataset is formatted as follows.
m n
x11 y11
x12 y12
.
.
.
x1m y1m
x21 z21
x22 z22
.
.
.
x2n z2nm and n are integers (3 ≤ m ≤ 100, 3 ≤ n ≤ 100) which represent the numbers of the vertices of the polygons, C1 and C2, respectively.
x1i, y 1 i, x 2j and z 2j are integers between -100 and 100, inclusive. ( x 1i, y 1i) and ( x 2j , z 2j) mean the i-th and j-th vertices' positions of C 1 and C 2respectively.
The sequences of these vertex positions are given in the counterclockwise order either on the xy-plane or the xz-plane as in Figure I.1.
You may assume that all the polygons are convex, that is, all the interior angles of the polygons are less than 180 degrees. You may also assume that all the polygons are simple, that is, each polygon's boundary does not cross nor touch itself.
The end of the input is indicated by a line containing two zeros.
Output
For each dataset, output the volume of the intersection of the two prisms, P1 and P2, with a decimal representation in a line.
None of the output values may have an error greater than 0.001. The output should not contain any other extra characters.
Sample Input
4 3
7 2
3 3
0 2
3 1
4 2
0 1
8 1
4 4
30 2
30 12
2 12
2 2
15 2
30 8
13 14
2 8
8 5
13 5
21 7
21 9
18 15
11 15
6 10
6 8
8 5
10 12
5 9
15 6
20 10
18 12
3 3
5 5
10 3
10 10
20 8
10 15
10 8
4 4
-98 99
-99 -99
99 -98
99 97
-99 99
-98 -98
99 -99
96 99
0 0Output for the Sample Input
4.708333333333333
1680.0000000000005
491.1500000000007
0.0
7600258.4847715655 - 题解:朴素想法,求出公共部分的凸多面体的顶点坐标,然后再计算其体积。公共部分的凸多面体的顶点都是一个棱柱的侧面与另一个棱柱的侧棱的交点,可以通过O(nm)时间的枚举求得,但因为涉及三维空间的几何运算,实现起来是非常麻烦的。
事实上,沿x轴对棱柱切片即可:按某个值对侧棱与z轴平行的棱柱P1切片后,就得到了[y1,y2]*(-∞,∞)这样的在z轴方向无限延伸的长方形的横截面,同样的,我们按某个x值对侧棱与y轴平行的棱柱P2切片后,就得到了(-∞,∞)*[z1,z2]这样的在y轴方向无限延伸的长方形的横截面。因此,我们按某个x值对两个棱柱的公共部分切片后,得到的横截面就是长方形[y1,y2]*[z1,z2]。而长方形的面积通过(y2-y1)*(z2-z1)就可以求得,关于x轴对面积求积分就能得到公共部分的体积了。
首先,枚举出原棱柱底面顶点的所有x坐标并排序,在相邻两个x坐标之间的区间中按x值切片得到的长方形的顶点坐标是关于x的线性函数,所以面积就是关于x的二次函数,其积分很容易计算,虽然可以通过求得表达式后再来计算二次函数的积分,但应用Simpson公式则更为轻松。Simpson公式如下:
Simpson公式就是在数值积分中用二次函数来近似原函数进行积分而得到的公式,如果原函数本身就是次数不超过二的多项式,那么用Simpson公式就可以得到精确的积分值。利用该公式,无需求出关于x的多项式,而只要计算按区间的端点和中点切片得到的长方形的面积就够了。
- 代码:
#include<cstdio>
#include<algorithm>
#include<vector> using namespace std; const int INF=0x3f3f3f3f;
const double EPS=1e-;
const int MAX_N=;
int N,M;
int X1[MAX_N], Y1[MAX_N], X2[MAX_N], Z2[MAX_N]; double max(double x, double y)
{
if (x>y+EPS) return x;
return y;
} double min(double x, double y)
{
if (x<y-EPS) return x;
return y;
} double width(int * X, int * Y, int n, double x)
{
double lb=INF, ub=-INF;
for (int i=; i<n; i++)
{
double x1=X[i], y1=Y[i], x2=X[(i+)%n], y2=Y[(i+)%n];
if ((x1-x)*(x2-x)<= && x1!=x2)
{
double y=y1+(y2-y1)*(x-x1)/(x2-x1);
lb=min(lb, y);
ub=max(ub, y);
}
}
return max(0.0, ub-lb);
} int main()
{
while (~scanf("%d %d", &M, &N))
{
if (M== && N==) break;
for (int i=; i<M; i++)
{
scanf("%d %d", &X1[i], &Y1[i]);
}
for (int i=; i<N; i++)
{
scanf("%d %d", &X2[i], &Z2[i]);
}
int min1=*min_element(X1, X1+M), max1=*max_element(X1, X1+M);
int min2=*min_element(X2, X2+N), max2=*max_element(X2, X2+N);
vector<int> xs;
for (int i=; i<M; i++) xs.push_back(X1[i]);
for (int i=; i<N; i++) xs.push_back(X2[i]);
sort(xs.begin(), xs.end());
double res=;
for (int i=; i+<xs.size(); i++)
{
double a=xs[i], b=xs[i+], c=(a+b)/;
if (min1<=c && c<=max1 && min2<=c && c<=max2)
{
double fa=width(X1, Y1, M, a)*width(X2, Z2, N, a);
double fb=width(X1, Y1, M, b)*width(X2, Z2, N, b);
double fc=width(X1, Y1, M, c)*width(X2, Z2, N, c);
res+=(b-a)/*(fa+*fc+fb);
}
}
printf("%.10f\n", res);
}
}
Intersection of Two Prisms(AOJ 1313)的更多相关文章
- UVALive 5075 Intersection of Two Prisms(柱体体积交)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- [LeetCode] Intersection of Two Arrays II 两个数组相交之二
Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...
- [LeetCode] Intersection of Two Arrays 两个数组相交
Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...
- [LeetCode] Intersection of Two Linked Lists 求两个链表的交点
Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...
- 【leetcode】Intersection of Two Linked Lists
题目简述: Write a program to find the node at which the intersection of two singly linked lists begins. ...
- AOJ 0121: Seven Puzzle【BFS】
From: AOJ 0121 思路:与前几题的bfs不同,这次的bfs没有明确的移动对象,看似任意一个数都可以当成对象移动.这时我们只需要抓住一个格子就行,比如我们把0作为移动对象,那么0在地图中漫游 ...
- [LintCode] Intersection of Two Linked Lists 求两个链表的交点
Write a program to find the node at which the intersection of two singly linked lists begins. Notice ...
- LeetCode Intersection of Two Arrays
原题链接在这里:https://leetcode.com/problems/intersection-of-two-arrays/ 题目: Given two arrays, write a func ...
- AOJ DSL_2_C Range Search (kD Tree)
Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...
随机推荐
- ubuntu升级已安装git版本
# To get the very latest version of git, you need to add the PPA (Personal Package Archive) from the ...
- python设计模式之命令模式
python设计模式之命令模式 现在多数应用都有撤销操作.虽然难以想象,但在很多年里,任何软件中确实都不存在撤销操作.撤销操作是在1974年引入的,但Fortran和Lisp分别早在1957年和195 ...
- Java中的策略模式,完成一个简单地购物车,两种付款策略实例教程
策略模式是一种行为模式.用于某一个具体的项目有多个可供选择的算法策略,客户端在其运行时根据不同需求决定使用某一具体算法策略. 策略模式也被称作政策模式.实现过程为,首先定义不同的算法策略,然后客户端把 ...
- Spring @Transactional事物配置无效原因
spring @transaction不起作用,Spring事物注意事项 1. 在需要事务管理的地方加@Transactional 注解.@Transactional 注解可以被应用于接口定义和接口方 ...
- 「完整案例」基于Socket开发TCP传输客户端
1 程序界面设计 TCP客户端在上位机开发中应用很广,大多数情况下,上位机软件都是作为一个TCP客户端来与PLC或其他服务器进行通信的.TCP客户端的主要功能就是连接服务器.发送数据.接收数据.断开 ...
- Java并发篇
Java并发篇 作者:星晴(当地小有名气,小到只有自己知道的杰伦粉) 1. Java锁 1.1 乐观锁 1.2 悲观锁 1.3 自旋锁 1.4 Synchronized 同步锁 1.4.1 核心组件 ...
- beego 快速入门
原文链接:https://beego.me/quickstart 1.安装依赖 git clone http://github.com/astaxie/beego.git git clone http ...
- Solon详解(四)- Solon的事务传播机制
在前面的篇章里我们已经见识了 Solon 对事务的控制,及其优雅曼妙的形态.该篇将对事务的传播机制做讲解.出于对用户的学习成本考虑,Solon 借签了Spring 的事务传播策略:并友好的支持多数据源 ...
- nvm -- node 多版本管理器
Node.js 越来越热,应用的场景也越来越多. 在开发中,我们可能同时在进行多个 node 项目,而这些不同的项目所使用的 node 版本又是不一样的,或者是要用更新的 node 版本进行试验和学习 ...
- MySQL数据库修改字段名、字段类型、字段长度
1.MySQL数据库中,修改字段SQL如下: alter table AppVersion change version versionCode varchar() DEFAULT NULL COMM ...