题目描述

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

思路

线段树,打个乘法lazy标记即可

#include <cstdio>
const int maxn = 100000 + 10;
struct Seg { long long l,r,sum,add,mul; } tree[maxn*4];
long long p;
long long n,m;
inline void pushup(long long root) { tree[root].sum = tree[root<<1].sum+tree[root<<1|1].sum; tree[root].sum %= p; }
inline void BuildTree(long long l,long long r,long long root) {
tree[root].l = l;
tree[root].r = r;
tree[root].mul = 1;
if (l == r) {
scanf("%lld",&tree[root].sum);
tree[root].sum %= p;
return;
}
long long mid = l+r>>1;
BuildTree(l,mid,root<<1);
BuildTree(mid+1,r,root<<1|1);
pushup(root);
}
inline void pushdown(long long root) {
if (tree[root].mul != 1) {
tree[root<<1].mul = tree[root<<1].mul*tree[root].mul%p;
tree[root<<1|1].mul = tree[root<<1|1].mul*tree[root].mul%p;
tree[root<<1].add = tree[root<<1].add*tree[root].mul%p;
tree[root<<1|1].add = tree[root<<1|1].add*tree[root].mul%p;
tree[root<<1].sum = tree[root<<1].sum*tree[root].mul%p;
tree[root<<1|1].sum = tree[root<<1|1].sum*tree[root].mul%p;
tree[root].mul = 1;
}
if (tree[root].add != 0) {
tree[root<<1].add = (tree[root<<1].add+tree[root].add)%p;
tree[root<<1|1].add = (tree[root<<1|1].add+tree[root].add)%p;
tree[root<<1].sum = (tree[root<<1].sum+tree[root].add*(tree[root<<1].r-tree[root<<1].l+1))%p;
tree[root<<1|1].sum = (tree[root<<1|1].sum+tree[root].add*(tree[root<<1|1].r-tree[root<<1|1].l+1))%p;
tree[root].add = 0;
}
}
inline void UpdateAdd(long long ql,long long qr,long long l,long long r,long long root,long long x) {
if (ql > r || qr < l) return;
if (ql <= l && qr >= r) {
tree[root].add = (tree[root].add+x)%p;
tree[root].sum = (tree[root].sum+x*(r-l+1))%p;
return;
}
pushdown(root);
long long mid = l+r>>1;
UpdateAdd(ql,qr,l,mid,root<<1,x);
UpdateAdd(ql,qr,mid+1,r,root<<1|1,x);
pushup(root);
}
inline void UpdateMul(long long ql,long long qr,long long l,long long r,long long root,long long x) {
if (ql > r || qr < l) return;
if (ql <= l && qr >= r) {
tree[root].add = tree[root].add*x%p;
tree[root].mul = tree[root].mul*x%p;
tree[root].sum = tree[root].sum*x%p;
return;
}
pushdown(root);
long long mid = l+r>>1;
UpdateMul(ql,qr,l,mid,root<<1,x);
UpdateMul(ql,qr,mid+1,r,root<<1|1,x);
pushup(root);
}
inline long long Query(long long ql,long long qr,long long l,long long r,long long root) {
if (ql > r || qr < l) return 0;
if (ql <= l && qr >= r) return tree[root].sum;
pushdown(root);
long long mid = l+r>>1;
return (Query(ql,qr,l,mid,root<<1)+Query(ql,qr,mid+1,r,root<<1|1))%p;
}
int main() {
scanf("%lld%lld",&n,&p);
BuildTree(1,n,1);
scanf("%lld",&m);
while (m--) {
long long val;
long long op,l,r;
scanf("%lld%lld%lld",&op,&l,&r);
if (op == 1) {
scanf("%lld",&val);
UpdateMul(l,r,1,n,1,val);
} else if (op == 2) {
scanf("%lld",&val);
UpdateAdd(l,r,1,n,1,val);
} else printf("%lld\n",Query(l,r,1,n,1));
}
return 0;
}

【AHOI2009】 维护序列 - 线段树的更多相关文章

  1. BZOJ1798[Ahoi2009]维护序列——线段树

    题目描述     老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成.    有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2 ...

  2. [P2023][AHOI2009]维护序列(线段树)

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  3. [AHOI2009]维护序列 (线段树)

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  4. 洛谷 P2023 [AHOI2009]维护序列 || 线段树加法和乘法运算

    原理倒是非常简单.设原数为x,加法的lazytag为b,乘法的lazytag为a,操作数为c,那么原式为ax+b,乘上c后(ax+b)c=(ac)*x+b*c,加上c后(ax+b)+c=ax+(b+c ...

  5. BZOJ 1798 AHOI2009 Seq 维护序列 线段树

    题目大意:维护一个序列,提供三种操作: 1.将区间中每个点的权值乘上一个数 2.将区间中每个点的权值加上一个数 3.求一段区间的和对p取模的值 2631的超^n级弱化版.写2631之前能够拿这个练练手 ...

  6. [BZOJ1798][AHOI2009]Seq维护序列 线段树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 一眼看过去线段树,事实上就是线段树.对于乘和加的两个标记,我们可以规定一个顺序,比如 ...

  7. 洛谷 P2023 维护序列——线段树

    先上一波题目 https://www.luogu.org/problem/P2023 复习了一波线段树 题目涉及的操作有区间加 区间乘以及区间求和 tips:线段树在传标记的时候 优先传乘法标记再传加 ...

  8. COGS.1272.[AHOI2009]行星序列(线段树 区间加、乘、求和)

    题目链接 //注意取模! #include<cstdio> #include<cctype> using namespace std; const int N=1e5+5; i ...

  9. BZOJ_1798_[AHOI2009]维护序列_线段树

    BZOJ_1798_[AHOI2009]维护序列_线段树 题意:老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: ( ...

随机推荐

  1. ElementUI中 el-table-column 显示的数据为多个返回数据的拼接

    遇到个问题就是其中有个要展示的数据来自接口返回的两个字段. 原用法是: 原以为prop=" "中只能放一个字段的数据,想放两个字段数据的话,要把 <el-table-colu ...

  2. 题解 CF585F 【Digits of Number Pi】

    考虑用数位 \(DP\) 来统计数字串个数,用 \(SAM\) 来实现子串的匹配. 设状态 \(f(pos,cur,lenth,lim,flag)\),表示数位的位数,在 \(SAM\) 上的节点,匹 ...

  3. LeetCode 86 | 链表基础,一次遍历处理链表中所有符合条件的元素

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第53篇文章,我们一起来看LeetCode第86题,Partition List(链表归并). 本题的官方难度是M ...

  4. Dart中final和const关键字

    final和const 如果您从未打算更改一个变量,那么使用 final 或 const,不是var,也不是一个类型. 一个 final 变量只能被设置一次,两者区别在于:const 变量是一个编译时 ...

  5. APP自动化 -- 框架

    一.框架源码 https://github.com/jiangnan27/Autotest_APP_Open 二.框架环境 python3 + appium1.15.3 + pytest5.3.5 三 ...

  6. android 6.0三星5.1.1Root

    现在google是越来越不给我们留活路了… 从android 6.0开始, 三星的5.1.1开始. 默认都开启了data分区的forceencryption, 也就是强制加密. 也开启了/system ...

  7. 一个edit的学习笔记

    https://blog.csdn.net/woshizoe/article/details/51555396

  8. Kafka入门(2):消费与位移

    摘要 在这篇文章中,我将从消息在Kafka中的物理存储方式讲起,介绍分区-日志段-日志的各个层次. 然后我将接着上一篇文章的内容,把消费者的内容展开讲一讲,区分消费者与消费者组,以及这么设计有什么用. ...

  9. Kubernetes 教程:根据 PID 获取 Pod 名称

    原文链接:https://fuckcloudnative.io/posts/find-kubernetes-pod-info-from-process-id/ 在管理 Kubernetes 集群的过程 ...

  10. DOM练习 选择框、表格添加、变色

    多个选择框,三个按钮,显示:全选.反选.不选 html部分,建立五个多选框,三个按钮 <input type="checkbox"> <input type=&q ...