「一本通 1.3 例 4」Addition Chains
Addition Chains
题面
对于一个数列 \(a_1,a_2 \dots a_{m-1},a_m\) 且 \(a_1<a_2 \dots a_{m-1}<a_m\)。
数列中的一个数 \(a_k(2<k<=m)\) ,都有两个数 \(a_i,a_j(1<=i,j<k)\) 满足 \(a_i+a_j=a_k\)( \(i\) 可以等于\(j\) )。
换句话说就是 \(a_k\) 前面有两个数可以加起来等于 \(a_k\) 。这种数列就是加法链。
题目输入一个 \(n\) ,让你输出长度最小且以 \(n\) 结尾的加法链。
思路
本题在 \(oj\) 过了,落谷貌似卡死了
迭代加深,优化搜索顺序
不难看出题目中有最小的的字眼,并且可以确定这玩意儿可以用搜索
那么迭代加深就是最好的选择,这里简单说一下迭代加深
- 迭代加深,顾名思义,我们都知道在深搜时利用的是栈,那么官方点说就是形成了搜索树,如果你想要的答案有多解,按照树的思想就是你的多个答案分布在不同层中,要想最快得到答案,必然是去那个最近的层数。
- 因此我们可以限制搜索层数,让其挨个搜索,减少没有用的冗杂操作。这种方法叫最优性剪枝,又称迭代加深,善于在搜索中找到最“小”答案。
本题还有一个剪枝的地方,那就是优化搜索顺序,不同搜索顺序形成的搜索树大小差距倍大,
题中要求最大数是 \(n\),如果抛开问题,我要求你找出可以组成 \(n\) 的数,是不是越大越好,所以要想尽快找到陪成 \(n\) 的数,那就需要从大数往前扫,
依据这个特性,是不是我们需要求的 \(a_i\) 都符合以上条件,这就是需要更改搜索顺序的原因
Code
#include <iostream>//迭代加深
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
const int manx=1e6+10;
const int mamx = 1e6 + 11;
const ll mod = 2123400401301379571;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int n,a[manx],minx,ans[manx];
void dfs(int dep){//迭代加深
if(dep-1 > minx) return;//日常边界
if(a[dep-1] > n) return;//日常边界
if(a[dep-1] == n){
if((dep-1) > minx)
return;
minx = dep - 1;//更新
for(int i = 1;i <= n; i++) ans[i] = a[i];
//else return;
}
else{
for(int i = dep - 1;i >= 1; i--){//优化搜索顺序
if(a[dep-1] + a[i] <= n){
a[dep] = a[dep-1] + a[i];
dfs(dep + 1);
a[dep] = 0;
}
}
}
}
int main(){
while(1){
n = read();
if(n == 0) return 0;
minx = 99999999;//我感觉这玩意挺神的,这个minx一是动态的,一直在更新,是的我们的答案更小
a[1] = 1;
dfs(2);
for(int i = 1;i <= minx; i++) cout<<ans[i]<<" ";
cout<<endl;
}
return 0;
}
「一本通 1.3 例 4」Addition Chains的更多相关文章
- 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie
题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1≤r1<l2≤r2≤N,x⨁yx\bigoplus yx⨁y 表示 ...
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- 「LOJ#10043」「一本通 2.2 例 1」剪花布条 (KMP
题目描述 原题来自:HDU 2087 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? 输入格式 输入数据 ...
- LOJ #10131 「一本通 4.4 例 2」暗的连锁
LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...
- 「一本通 1.3 例 5」weight]
「一本通 1.3 例 5」weight 题面 给定原数列 \(a_1,a_2,a_n\) ,给定每个数的前缀和以及后缀和,并且打乱顺序. 给出一个集合 \(S\) 要求从集合 \(S\) 中找到合适的 ...
- 「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair (Trie
题目描述 在给定的 $N$ 个整数 $A_1,A_2,A_3...A_n$ 中选出两个进行异或运算,得到的结果最大是多少? 输入格式 第一行一个整数$N$. 第二行$N$个整数$A_i$. 输出格式 ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- 「LOJ#10034」「一本通 2.1 例 2」图书管理 (map
题目描述 图书管理是一件十分繁杂的工作,在一个图书馆中每天都会有许多新书加入.为了更方便的管理图书(以便于帮助想要借书的客人快速查找他们是否有他们所需要的书),我们需要设计一个图书查找系统. 该系统需 ...
- Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)
题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...
随机推荐
- sql中模糊查询和在开始和结束时间之间
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...
- [leetcode299] 299. Bulls and Cows
public String getHint(String secret, String guess) { /* 判断bull 是通过比较两个字符串的每一位,每次相同就删除该字符出现的次数,因为后边的 ...
- python-scrapy爬取某招聘网站(二)
首先要准备python3+scrapy+pycharm 一.首先让我们了解一下网站 拉勾网https://www.lagou.com/ 和Boss直聘类似的网址设计方式,与智联招聘不同,它采用普通的页 ...
- rocketmq部署架构
1 技术架构 RocketMQ架构上主要分为四部分,如上图所示: Producer:消息发布的角色,支持分布式集群方式部署.Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息 ...
- 初探JAVA内部类细节一
定义: 可以将一个类的定义放在另一个类的内部 这就是内部类.--摘自java编程思想 一般实现方式: public class SimpleInnerClass { class Content { p ...
- mmall商城用户模块开发总结
1.需要实现的功能介绍 注册 登录 用户名校验 忘记密码 提交问题答案 重置密码 获取用户信息 更新用户信息 退出登录 目标: 避免横向越权,纵向越权的安全漏洞 MD5明文加密级增加的salt值 Gu ...
- 在阿里云托管的k8s上使用nas做动态存储
前言 关于aliyun托管k8s的存储插件主要有两种: CSI # kubectl get pod -n kube-system | grep csi-plugin csi-plugin-8bbnw ...
- 隐马尔科夫模型(HMM)原理详解
隐马尔可夫模型(Hidden Markov Model,HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM在语音识别.自然语言处理.生物信息.模 ...
- leetcode 864. 获取所有钥匙的最短路径(BFS,状态压缩)
题目链接 864. 获取所有钥匙的最短路径 题意 给定起点,要求在最短步骤内收集完所有钥匙,遇到每把锁之前只有 有对应的钥匙才能够打开 思路 BFS+状态压缩典型题目 先确定起点和总的钥匙数目,其次难 ...
- Pandas应用案例-股票分析:使用tushare包获取股票的历史行情数据进行数据分析
目标: 使用tushare包获取股票的历史行情数据 输出该股票所有收盘比开盘上涨3%以上的日期 输出该股票所有开盘比前日收盘跌幅超过2%以上的日期 假如为我们从2010年1月1日开始,每月第一个交易日 ...