Cookies

先简单二分出最后查的是哪个标号。

然后发现这个可以快速处理出一段区间的答案,分段打表即可。

注意代码长度限制不要爆了我就白打了 10min

Code

ll n, k, a[N];
ll S[4001] = { ... };
int m;
inline ll cal(ll x) {
for (ri i = 1; i <= m && x >= k; ++i) x -= x / a[i];
return x;
}
inline ll Cal(ll l, ll r) {
static int divv[Bas + 5], len;
len = r - l;
for (ri i = 0; i <= len; ++i) divv[i] = 1;
for (ri i = 2; (ll) i * i <= r; ++i) for (ri j = max((ll) i, (l + i - 1) / i) * i - l; j <= len; j += i)
divv[j] = i;
ll res = 0;
for (ri i = 0; i <= len; ++i) res += divv[i];
return res;
}
namespace Biao {
inline void get_Biao() {
cout << "ll S[] = { 0";
ll l = 1, r = Bas;
for (ri i = 1; i <= 4000; ++i, l += Bas, r += Bas) cout << ", " << Cal(l, r);
cout << " };\n";
exit(0);
}
}
int main() {
//Biao:: get_Biao();
for (ri i = 1; i <= 4000; ++i) S[i] += S[i - 1];
n = readl(), m = read(), k = readl();
for (ri i = 1; i <= m; ++i) a[i] = readl();
if (cal(n) < k) { puts("-1"); continue; }
ll L = 0, R = n, p = n;
while (L <= R) {
ll mid = (L + R) >> 1;
if (cal(mid) >= k) p = mid, R = mid - 1;
else L = mid + 1;
}
if (cal(n) < k) {
cout << -1 << '\n';
continue;
}
if (p % Bas <= Bas / 2) {
ll res = Cal(p / Bas * Bas + 1, p);
res += S[p / Bas];
cout << res << '\n';
}
else {
ll res = -Cal(p + 1, (p / Bas + 1) * Bas);
res += S[p / Bas + 1];
cout << res << '\n';
}
return 0;
}

Distinct Sub-palindromes

签到,发现长度 \(>3\) 只能形如 \(abcabcabc...\),算下 \(3\) 的答案即可。

Code

int main() {
ans[1] = 26, ans[2] = 26 * 26, ans[3] = 26 * 25 * 24 + 26 * 25 + 26 * 25 + 26 * 25 + 26;
for (ri tt = read(); tt; --tt) {
int n = read();
if (n <= 3) cout << ans[n] << '\n';
else cout << 26 * 25 * 24 << '\n';
}
return 0;
}

Fibonacci Sum

等比数列求和,要特判 \(1\)。

场上过了的赛后被卡常了...卡了一波终于过了。

Code

int main() {
A = mul(iv2, add(1, bas)), B = mul(iv2, dec(1, bas));
init(100000);
for (ri tt = read(), tp = mul(Inv(A), B); tt; --tt) {
n = readl(), c = readl() % (mod - 1), k = read();
int res = 0, n1 = (n + 1) % (mod - 1), n2 = (n + 1) % mod;
int mt = ksm(tp, c), Mt = ksm(ksm(A, c), k);
for (ri t, i = 0; i <= k; ++i) {
if (Mt == 1) t = n2;
else t = mul(dec(ksm(Mt, n1), 1), Inv(dec(Mt, 1)));
(i & 1 ? Dec : Add) (res, mul(t, C(k, i)));
Mul(Mt, mt);
}
cout << mul(res, pw[k]) << '\n';
}
return 0;
}

Finding a MEX

写了个根号分治套 \(\text{set}\) 居然过了是我没想到的,不过由于实现不好会被重边卡,调了一年...

实际上可以用链表做到优美的 \(O(n\sqrt n)\)比赛的时候假胡了一下没实现,如果不行不要喷我

Code

inline void ins(int x, int v) {
if (v > n) return;
++cnt[x][v];
if (cnt[x][v] > 1) return;
set <pii> :: iterator it = sg[x].upper_bound(pii(v, n));
--it;
pii t = *it;
sg[x].erase(it);
if (t.fi < v) sg[x].insert(pii(t.fi, v - 1));
if (v < t.se) sg[x].insert(pii(v + 1, t.se));
}
inline void del(int x, int v) {
if (v > n) return;
--cnt[x][v];
if (cnt[x][v]) return;
set <pii> :: iterator it = sg[x].upper_bound(pii(v, n));
int l = v, r = v;
if (it != sg[x].begin()) {
--it;
if (it -> se == v - 1) l = it -> fi;
++it;
}
if (it != sg[x].end()) {
if (it -> fi == v + 1) r = it -> se;
}
sg[x].erase(pii(l, v - 1));
sg[x].erase(pii(v + 1, r));
sg[x].insert(pii(l, r));
}
inline void upd(int x, int v) {
for (ri i = 1; i <= tot; ++i) if (vs[i][x]) {
del(i, a[x]);
ins(i, v);
}
a[x] = v;
}
inline int qry(int x) {
static bool vs[N];
if (id[x]) {
x = id[x];
return sg[x].begin() -> fi;
}
else {
for (ri i = 0; i <= blo; ++i) vs[i] = 0;
for (ri i = 0; i < e[x].size(); ++i) {
int v = a[e[x][i]];
if (v <= blo) vs[v] = 1;
}
for (ri i = 0; i <= blo; ++i) if (!vs[i]) return i;
}
}
int main() {
n = read(), m = read();
for (ri i = 1; i <= n; ++i) a[i] = read(), e[i].clear(), id[i] = 0;
for (ri i = 1, u, v; i <= m; ++i) {
u = read(), v = read();
e[u].pb(v), e[v].pb(u);
}
tot = 0;
int mx = 0;
for (ri i = 1; i <= n; ++i) mx = max(mx, (int) e[i].size());
for (ri i = 1; i <= n; ++i) {
sort(e[i].begin(), e[i].end());
e[i].erase(unique(e[i].begin(), e[i].end()), e[i].end());
if (e[i].size() >= blo) {
id[i] = ++tot, sg[tot].clear();
for (ri j = 0; j <= n; ++j) cnt[tot][j] = vs[tot][j] = 0;
sg[tot].insert(pii(0, n));
for (ri j = 0; j < e[i].size(); ++j) {
int v = a[e[i][j]];
vs[tot][e[i][j]] = 1;
ins(tot, v);
}
}
}
for (ri tt = read(), op, x; tt; --tt) {
op = read(), x = read();
if (op == 1) upd(x, read());
else cout << qry(x) << '\n';
}
return 0;
}

Leading Robots

模拟题意,对给出的二次函数维护出最大值的轮廓就行了。

Code

inline db Cross(int x, int y) { return (B[y] - B[x]) / (K[x] - K[y]); }
inline bool chk(int x, int y, int z) {
db x_0 = Cross(x, y);
return K[x] * x_0 + B[x] <= K[z] * x_0 + B[z];
}
inline bool cmp(int x, int y) { return B[x] < B[y] || (B[x] == B[y] && K[x] < K[y]); }
int main() {
scanf("%d", &n);
for (ri i = 1; i <= n; ++i) scanf("%lf%lf", &B[i], &K[i]), id[i] = i, ban[i] = 0;
sort(id + 1, id + n + 1, cmp);
top = 0;
for (ri i = 1, p; i <= n; ++i) {
p = id[i];
if (top) {
if (make_pair(K[p], B[p]) == make_pair(K[q[top]], B[q[top]])) {
ban[p] = ban[q[top]] = 1;
continue;
}
while (top > 1 && chk(q[top], q[top - 1], p)) --top;
if (top == 1 && K[top] >= K[q[top]]) --top;
}
q[++top] = p;
}
int res = 0;
for (ri i = 1; i <= top; ++i) if (!ban[q[i]]) ++res;
cout << res << '\n';
return 0;
}

Math is Simple

\(\large{\text{Math is not Simple}}\)

设题目要求的是 \(f_n\),然后 \(g_n=\sum\limits_{1\le a<b\le n,\gcd(a,b)=1,a+b=n}\frac1{ab}\),将 \(f_n\) 和 \(f_{n-1}\) 做差。

发现 \(f_n=f_{n-1}+g_n-g_{n-1}=\cdots=g_n+\frac12\)

这个 \(g\) 可以莫反算,这题就解决了。

Code

int main() {
int Lm = 1e8, _Lm = 10000;
inv[1] = 1;
for (ri i = 2; i <= Lm; ++i) inv[i] = mul(inv[mod - mod / i * i], mod - mod / i);
for (ri i = 2; i <= Lm; ++i) Add(inv[i], inv[i - 1]);
for (ri i = 2; i <= _Lm; ++i) {
if (!vs[i]) pri[++tot] = i;
for (ri j = 1; j <= tot && i * pri[j] <= _Lm; ++j) {
vs[i * pri[j]] = 1;
if (i == i / pri[j] * pri[j]) break;
}
}
int iv2 = (mod + 1) >> 1;
n = read();
int x = n;
vector <int> divv;
for (ri i = 1; i <= tot && pri[i] * pri[i] <= x; ++i) if (x == x / pri[i] * pri[i]) {
divv.pb(pri[i]);
while (x == x / pri[i] * pri[i]) x /= pri[i];
}
if (x ^ 1) divv.pb(x);
int res = 0, lm = 1 << divv.size();
vector <int> Divv(lm);
if (n > 2) for (ri s = 0; s < lm; ++s) {
Divv[s] = s ? Divv[s - (s & -s)] * divv[__builtin_ctz(s)] : 1;
int Miu = __builtin_popcount(s) & 1 ? mod - 1 : 1;
Add(res, mul(mul(Miu, inv[n / Divv[s]]), dec(inv[Divv[s]], inv[Divv[s] - 1])));
}
cout << add(mul(res, dec(inv[n], inv[n - 1])), iv2) << '\n';
return 0;
}

Minimum Index

边做 \(\text{Lyndon}\) 分解边统计答案即可。

Code

int main() {
n = Read(s);
int ss = 0;
for (ri i = 1; i <= n; ++i) vs[i] = 0;
for (ri i = 1, iv = Inv(1112), j, k, mt = 1; i <= n; ) {
j = i, k = i + 1;
if (!vs[i]) len[i] = 1, vs[i] = 1, Add(ss, mul(mt, i)), Mul(mt, 1112);
for (; k <= n && s[j] <= s[k]; ++k) {
j = s[j] < s[k] ? i : j + 1;
if (!vs[k]) {
vs[k] = 1;
if (i == j) len[k] = k - i + 1;
else len[k] = len[j - 1];
Add(ss, mul(mt, k - len[k] + 1)), Mul(mt, 1112);
}
}
for (; i <= j; i += k - j);
}
cout << ss << '\n';
return 0;
}

Mow

维护一下半平面交即可。

调了半个上午都没调出来,最后发现好像是 \(\text{hdu}\) 不支持用 \(\text{printf}\) 输出 \(\text{long double}\) 类型的答案...

Code

inline bool cmp(Line x, Line y) { return x.ang < y.ang; }
inline pt Cross(Line a, Line b) {
db s1 = (a.a - b.a) * (a.b - b.a), s2 = (a.b - b.b) * (a.a - b.b), t = s1 / (s1 + s2);
return b.a + (b.b - b.a) * t;
}
inline bool chk(Line x, Line y, Line z) {
pt tp = Cross(x, y);
return (z.b - z.a) * (tp - z.a) <= 0;
}
const db pi = acosl(-1.0);
inline db calc() {
static int q[N], hd, tl;
static pt A[N];
sort(L + 1, L + n + 1, cmp);
hd = 1, tl = 0;
for (ri i = 1; i <= n; ++i) {
while (hd < tl && chk(L[q[tl]], L[q[tl - 1]], L[i])) --tl;
while (hd < tl && chk(L[q[hd]], L[q[hd + 1]], L[i])) ++hd;
q[++tl] = i;
}
while (hd < tl && chk(L[q[tl]], L[q[tl - 1]], L[q[hd]])) --tl;
while (hd < tl && chk(L[q[hd]], L[q[hd + 1]], L[q[tl]])) ++hd;
if (tl - hd + 1 < 3) return 0;
q[tl + 1] = q[hd];
int ct = 0;
for (ri i = hd; i <= tl; ++i) A[++ct] = Cross(L[q[i]], L[q[i + 1]]);
A[ct + 1] = A[1];
db res = 0, ss = 0;
for (ri i = 1; i <= ct; ++i) res += A[i] * A[i + 1], ss += (A[i + 1] - A[i]).mod();
res *= 0.5l, res += ss * R;
return res + pi * R * R;
}
int main() {
n = read(), R = read(), A = read(), B = read();
for (ri i = 1; i <= n; ++i) a[i].x = read(), a[i].y = read();
a[n + 1] = a[1];
db S = 0, res;
for (ri i = 1; i <= n; ++i) S += a[i] * a[i + 1];
S *= 0.5l;
if (S < 0) {
S = -S;
reverse(a + 1, a + n + 1);
a[n + 1] = a[1];
}
res = S * A;
if (A <= B) {
cout << fixed << setprecision(20) << res << '\n';
continue;
}
for (ri i = 1; i <= n; ++i) {
pt tp = a[i + 1] - a[i];
db ang = atan2l(tp.y, tp.x);
tp = pt(-tp.y, tp.x);
tp /= tp.mod(), tp *= R;
L[i] = (Line) { a[i] + tp, a[i + 1] + tp, ang };
}
res -= (A - B) * calc();
cout << fixed << setprecision(20) << res << '\n';
return 0;
}

2020 Multi-University Training Contest 1 部分题解的更多相关文章

  1. 2018 Multi-University Training Contest 3(部分题解)

    Problem F. Grab The Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Ja ...

  2. 2018 Multi-University Training Contest 2(部分题解)

    Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  3. 2018 Multi-University Training Contest 1(部分题解)

    Maximum Multiple Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. 2016 Multi-University Training Contest 3 部分题解

    1001,只要枚举区间即可.签到题,要注意的是输入0的话也是“TAT”.不过今天补题的时候却WA了好几次,觉得奇怪.原来出现在判断条件那里,x是一个int64类型的变量,在进行(x<65536* ...

  5. 2016 Multi-University Training Contest 1 部分题解

    第一场多校,出了一题,,没有挂零还算欣慰. 1001,求最小生成树和,确定了最小生成树后任意两点间的距离的最小数学期望.当时就有点矛盾,为什么是求最小的数学期望以及为什么题目给了每条边都不相等的条件. ...

  6. 2016 Multi-University Training Contest 4 部分题解

    1001,官方题解是直接dp,首先dp[i]表示到i位置的种类数,它首先应该等于dp[i-1],(假设m是B串的长度)同时,如果(i-m+1)这个位置开始到i这个位置的这一串是和B串相同的,那么dp[ ...

  7. 2018 Multi-University Training Contest - Team 1 题解

    Solved A HDU 6298 Maximum Multiple Solved B HDU 6299 Balanced Sequence Solved C HDU 6300 Triangle Pa ...

  8. 2016 Multi-University Training Contest 2 部分题解

    1009,直接贪心,只要让后面的尽量小,第一位和第二位尽量大即可. 1011,直接统计奇数的字母的个数,然后用偶数的个数平均分配到它们上面即可.代码如下: #include <stdio.h&g ...

  9. 【多校】2019 Multi-University Training Contest 1官方题解

    Blank 定义dp[i][j][k][t]dp[i][j][k][t]dp[i][j][k][t]代表填完前ttt个位置后,{0,1,2,3}\{0,1,2,3\}{0,1,2,3}这4个数字最后一 ...

随机推荐

  1. vue 集成html5 plus

    首先要安装一个包 vue-html5plus npm i vue-html5plus -S 然后配置这个文件 在main.js添加一串代码 var onPlusReady = function (ca ...

  2. 蜂鸟E203系列——Linux调试(GDB+Openocd)

    欲观原文,请君移步 本文基于文章<蜂鸟E203系列--利用 Hbrid-E-SDK 环境开发程序> GDB 简介 GDB(GNU Project Debugger),是 GNU 工具链中的 ...

  3. db2数据库字段更新当前时间

    db2数据库中想要将字段的时间通过sql语句的方式更新: 例如: Update tablename set 字段1='打酱油', 字段2 = TO_CHAR(current timestamp,'YY ...

  4. Linux下C ,C ++, Qt开发环境

    目录 Linux发行版的选择 安装常用的开发工具(这里针对C/C++/Qt) 安装openGL 中文输入法 安装sublime text 安装vscode apt-get常用命令 Qt环境 Qt常见问 ...

  5. Python Ethical Hacking - DNS Spoofing

    What is DNS Spoofing Sniff the DNSRR packet and show on the terminal. #!/usr/bin/env python from net ...

  6. Java中Map的entrySet()详解

    转发:原博客 由于Map中存放的元素均为键值对,故每一个键值对必然存在一个映射关系.Map中采用Entry内部类来表示一个映射项,映射项包含Key和ValueMap.Entry里面包含getKey() ...

  7. git安装并与远程仓库关联相关配置

    git是当前最流行的版本控制系统,下面简单记录一下git的安装及其与远程仓库的关联. git安装 打开git官网,下载对应的安装包. 双击运行安装包,安装过程中可以直接选择默认配置,一路next下去. ...

  8. js原型链结构理解

    在一般的面向对象的语言中,都存在类(class)的概念,类就是对象的模板,对象就是类的实例. 但在js中是没有类的定义的(万物皆是对象).  题外话:但是在ES6中提供了更接近传统语言的写法,引入了C ...

  9. sqlite 显示表内容时乱码,无法正常显示汉字,

    把txt文件另存为时,选择编码为utf-8即可

  10. MongoDB副本集部署

    mongodb 副本集搭建 环境192.168.1.191   master192.168.1.192   slave,arbiterOS: ubuntu14.04mongodb: mongodb-l ...