Socket粘包问题的3种解决方案,最后一种最完美!
在 Java 语言中,传统的 Socket 编程分为两种实现方式,这两种实现方式也对应着两种不同的传输层协议:TCP 协议和 UDP 协议,但作为互联网中最常用的传输层协议 TCP,在使用时却会导致粘包和半包问题,于是为了彻底的解决此问题,便诞生了此篇文章。
什么是 TCP 协议?
TCP 全称是 Transmission Control Protocol(传输控制协议),它由 IETF 的 RFC 793 定义,是一种面向连接的点对点的传输层通信协议。
TCP 通过使用序列号和确认消息,从发送节点提供有关传输到目标节点的数据包的传递的信息。TCP 确保数据的可靠性,端到端传递,重新排序和重传,直到达到超时条件或接收到数据包的确认为止。
TCP 是 Internet 上最常用的协议,它也是实现 HTTP(HTTP 1.0/HTTP 2.0)通讯的基础,当我们在浏览器中请求网页时,计算机会将 TCP 数据包发送到 Web 服务器的地址,要求它将网页返还给我们,Web 服务器通过发送 TCP 数据包流进行响应,然后浏览器将这些数据包缝合在一起以形成网页。
TCP 的全部意义在于它的可靠性,它通过对数据包编号来对其进行排序,而且它会通过让服务器将响应发送回浏览器说“已收到”来进行错误检查,因此在传输过程中不会丢失或破坏任何数据。
目前市场上主流的 HTTP 协议使用的版本是 HTTP/1.1,如下图所示:
什么是粘包和半包问题?
粘包问题是指当发送两条消息时,比如发送了 ABC 和 DEF,但另一端接收到的却是 ABCD,像这种一次性读取了两条数据的情况就叫做粘包(正常情况应该是一条一条读取的)。
半包问题是指,当发送的消息是 ABC 时,另一端却接收到的是 AB 和 C 两条信息,像这种情况就叫做半包。
为什么会有粘包和半包问题?
这是因为 TCP 是面向连接的传输协议,TCP 传输的数据是以流的形式,而流数据是没有明确的开始结尾边界,所以 TCP 也没办法判断哪一段流属于一个消息。
粘包的主要原因:
- 发送方每次写入数据 < 套接字(Socket)缓冲区大小;
- 接收方读取套接字(Socket)缓冲区数据不够及时。
半包的主要原因:
- 发送方每次写入数据 > 套接字(Socket)缓冲区大小;
- 发送的数据大于协议的 MTU (Maximum Transmission Unit,最大传输单元),因此必须拆包。
小知识点:什么是缓冲区?
缓冲区又称为缓存,它是内存空间的一部分。也就是说,在内存空间中预留了一定的存储空间,这些存储空间用来缓冲输入或输出的数据,这部分预留的空间就叫做缓冲区。
缓冲区的优势以文件流的写入为例,如果我们不使用缓冲区,那么每次写操作 CPU 都会和低速存储设备也就是磁盘进行交互,那么整个写入文件的速度就会受制于低速的存储设备(磁盘)。但如果使用缓冲区的话,每次写操作会先将数据保存在高速缓冲区内存上,当缓冲区的数据到达某个阈值之后,再将文件一次性写入到磁盘上。因为内存的写入速度远远大于磁盘的写入速度,所以当有了缓冲区之后,文件的写入速度就被大大提升了。
粘包和半包问题演示
接下来我们用代码来演示一下粘包和半包问题,为了演示的直观性,我会设置两个角色:
- 服务器端用来接收消息;
- 客户端用来发送一段固定的消息。
然后通过打印服务器端接收到的信息来观察粘包和半包问题。
服务器端代码如下:
/**
* 服务器端(只负责接收消息)
*/
class ServSocket {
// 字节数组的长度
private static final int BYTE_LENGTH = 20;
public static void main(String[] args) throws IOException {
// 创建 Socket 服务器
ServerSocket serverSocket = new ServerSocket(9999);
// 获取客户端连接
Socket clientSocket = serverSocket.accept();
// 得到客户端发送的流对象
try (InputStream inputStream = clientSocket.getInputStream()) {
while (true) {
// 循环获取客户端发送的信息
byte[] bytes = new byte[BYTE_LENGTH];
// 读取客户端发送的信息
int count = inputStream.read(bytes, 0, BYTE_LENGTH);
if (count > 0) {
// 成功接收到有效消息并打印
System.out.println("接收到客户端的信息是:" + new String(bytes));
}
count = 0;
}
}
}
}
客户端代码如下:
/**
* 客户端(只负责发送消息)
*/
static class ClientSocket {
public static void main(String[] args) throws IOException {
// 创建 Socket 客户端并尝试连接服务器端
Socket socket = new Socket("127.0.0.1", 9999);
// 发送的消息内容
final String message = "Hi,Java.";
// 使用输出流发送消息
try (OutputStream outputStream = socket.getOutputStream()) {
// 给服务器端发送 10 次消息
for (int i = 0; i < 10; i++) {
// 发送消息
outputStream.write(message.getBytes());
}
}
}
}
以上程序的通讯结果如下图所示:
通过上述结果我们可以看出,服务器端发生了粘包和半包的问题,因为客户端发送了 10 次固定的“Hi,Java.”的消息,正常的结果应该是服务器端也接收到了 10 次固定的消息才对,但现实的结果并非如此。
粘包和半包的解决方案
粘包和半包的解决方案有以下 3 种:
- 发送方和接收方规定固定大小的缓冲区,也就是发送和接收都使用固定大小的 byte[] 数组长度,当字符长度不够时使用空字符弥补;
- 在 TCP 协议的基础上封装一层数据请求协议,既将数据包封装成数据头(存储数据正文大小)+ 数据正文的形式,这样在服务端就可以知道每个数据包的具体长度了,知道了发送数据的具体边界之后,就可以解决半包和粘包的问题了;
- 以特殊的字符结尾,比如以“\n”结尾,这样我们就知道结束字符,从而避免了半包和粘包问题(推荐解决方案)。
那么接下来我们就来演示一下,以上解决方案的具体代码实现。
解决方案1:固定缓冲区大小
固定缓冲区大小的实现方案,只需要控制服务器端和客户端发送和接收字节的(数组)长度相同即可。
服务器端实现代码如下:
/**
* 服务器端,改进版本一(只负责接收消息)
*/
static class ServSocketV1 {
private static final int BYTE_LENGTH = 1024; // 字节数组长度(收消息用)
public static void main(String[] args) throws IOException {
ServerSocket serverSocket = new ServerSocket(9091);
// 获取到连接
Socket clientSocket = serverSocket.accept();
try (InputStream inputStream = clientSocket.getInputStream()) {
while (true) {
byte[] bytes = new byte[BYTE_LENGTH];
// 读取客户端发送的信息
int count = inputStream.read(bytes, 0, BYTE_LENGTH);
if (count > 0) {
// 接收到消息打印
System.out.println("接收到客户端的信息是:" + new String(bytes).trim());
}
count = 0;
}
}
}
}
客户端实现代码如下:
/**
* 客户端,改进版一(只负责接收消息)
*/
static class ClientSocketV1 {
private static final int BYTE_LENGTH = 1024; // 字节长度
public static void main(String[] args) throws IOException {
Socket socket = new Socket("127.0.0.1", 9091);
final String message = "Hi,Java."; // 发送消息
try (OutputStream outputStream = socket.getOutputStream()) {
// 将数据组装成定长字节数组
byte[] bytes = new byte[BYTE_LENGTH];
int idx = 0;
for (byte b : message.getBytes()) {
bytes[idx] = b;
idx++;
}
// 给服务器端发送 10 次消息
for (int i = 0; i < 10; i++) {
outputStream.write(bytes, 0, BYTE_LENGTH);
}
}
}
}
以上代码的执行结果如下图所示:
优缺点分析
从以上代码可以看出,虽然这种方式可以解决粘包和半包的问题,但这种固定缓冲区大小的方式增加了不必要的数据传输,因为这种方式当发送的数据比较小时会使用空字符来弥补,所以这种方式就大大的增加了网络传输的负担,所以它也不是最佳的解决方案。
解决方案二:封装请求协议
这种解决方案的实现思路是将请求的数据封装为两部分:数据头+数据正文,在数据头中存储数据正文的大小,当读取的数据小于数据头中的大小时,继续读取数据,直到读取的数据长度等于数据头中的长度时才停止。
因为这种方式可以拿到数据的边界,所以也不会导致粘包和半包的问题,但这种实现方式的编码成本较大也不够优雅,因此不是最佳的实现方案,因此我们这里就略过,直接来看最终的解决方案吧。
解决方案三:特殊字符结尾,按行读取
以特殊字符结尾就可以知道流的边界了,因此也可以用来解决粘包和半包的问题,此实现方案是我们推荐最终解决方案。
这种解决方案的核心是,使用 Java 中自带的 BufferedReader
和 BufferedWriter
,也就是带缓冲区的输入字符流和输出字符流,通过写入的时候加上 \n
来结尾,读取的时候使用 readLine
按行来读取数据,这样就知道流的边界了,从而解决了粘包和半包的问题。
服务器端实现代码如下:
/**
* 服务器端,改进版三(只负责收消息)
*/
static class ServSocketV3 {
public static void main(String[] args) throws IOException {
// 创建 Socket 服务器端
ServerSocket serverSocket = new ServerSocket(9092);
// 获取客户端连接
Socket clientSocket = serverSocket.accept();
// 使用线程池处理更多的客户端
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(100, 150, 100,
TimeUnit.SECONDS, new LinkedBlockingQueue<>(1000));
threadPool.submit(() -> {
// 消息处理
processMessage(clientSocket);
});
}
/**
* 消息处理
* @param clientSocket
*/
private static void processMessage(Socket clientSocket) {
// 获取客户端发送的消息流对象
try (BufferedReader bufferedReader = new BufferedReader(
new InputStreamReader(clientSocket.getInputStream()))) {
while (true) {
// 按行读取客户端发送的消息
String msg = bufferedReader.readLine();
if (msg != null) {
// 成功接收到客户端的消息并打印
System.out.println("接收到客户端的信息:" + msg);
}
}
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
}
PS:上述代码使用了线程池来解决多个客户端同时访问服务器端的问题,从而实现了一对多的服务器响应。
客户端的实现代码如下:
/**
* 客户端,改进版三(只负责发送消息)
*/
static class ClientSocketV3 {
public static void main(String[] args) throws IOException {
// 启动 Socket 并尝试连接服务器
Socket socket = new Socket("127.0.0.1", 9092);
final String message = "Hi,Java."; // 发送消息
try (BufferedWriter bufferedWriter = new BufferedWriter(
new OutputStreamWriter(socket.getOutputStream()))) {
// 给服务器端发送 10 次消息
for (int i = 0; i < 10; i++) {
// 注意:结尾的 \n 不能省略,它表示按行写入
bufferedWriter.write(message + "\n");
// 刷新缓冲区(此步骤不能省略)
bufferedWriter.flush();
}
}
}
}
以上代码的执行结果如下图所示:
总结
本文我们讲了 TCP 粘包和半包问题,粘包是指读取到了两条信息,正常情况下消息应该是一条一条读取的,而半包问题是指读取了一半信息。导致粘包和半包的原因是 TCP 的传输是以流的形式进行的,而流数据是没有明确的开始和结尾标识的,因此就导致了此问题。
本文我们提供了 3 种粘包和半包的解决方案,其中最推荐的是使用 BufferedReader
和 BufferedWriter
按行来读、写和区分消息,也就是本文的第三种解决方案。
参考 & 鸣谢
https://zhuanlan.zhihu.com/p/126279630
https://www.jianshu.com/p/6a4ec6095f2c
关注公众号「Java中文社群」发现更多干货。
查看 Github 发现更多精彩:https://github.com/vipstone/algorithm
Socket粘包问题的3种解决方案,最后一种最完美!的更多相关文章
- Socket粘包问题终极解决方案—Netty版(2W字)!
上一篇我们讲了<Socket粘包问题的3种解决方案>,但没想到评论区竟然炸了.介于大家的热情讨论,以及不同的反馈意见,本文就来做一个扩展和延伸,试图找到问题的最优解,以及消息通讯的最优解决 ...
- iOS 处理socket粘包问题
1.什么是粘包? 粘包通常出现在TCP的协议里面,对于UDP来说是不会出现粘包状况的,之所以出现这种状况的原因,涉及到一种名为Nagle的算法. Nagle算法通过减少必须发送的封包的数量,提高网络应 ...
- Socket粘包问题
这两天看csdn有一些关于socket粘包,socket缓冲区设置的问题,发现自己不是很清楚,所以查资料了解记录一下: 一两个简单概念长连接与短连接:1.长连接 Client方与Server方先建立通 ...
- [转]关于Socket粘包问题
这两天看csdn有一些关于socket粘包,socket缓冲区设置的问题,发现自己不是很清楚,所以查资料了解记录一下: 一两个简单概念长连接与短连接:1.长连接 Client方与Server方先建立通 ...
- 解决Socket粘包问题——C#代码
解决Socket粘包问题——C#代码 前天晚上,曾经的一个同事问我socket发送消息如果太频繁接收方就会有消息重叠,因为当时在外面,没有多加思考 第一反应还以为是多线程导致的数据不同步导致的,让他加 ...
- Python socket粘包解决
socket粘包: socket 交互send时,连续处理多个send时会出现粘包,soket会把两条send作为一条send强制发送,会粘在一起. send发送会根据recv定义的数值发送一个固定的 ...
- TCP Socket 粘包
这两天看csdn有一些关于socket粘包,socket缓冲区设置的问题.发现自己不是非常清楚,所以查资料了解记录一下: 一两个简单概念长连接与短连接: 1.长连接 Client方与Server ...
- socket粘包现象加解决办法
socket粘包现象分析与解决方案 简单远程执行命令程序开发(内容回顾) res = subprocess.Popen(cmd.decode('utf-8'),shell=True,stderr=su ...
- 粘包和拆包及Netty解决方案
在RPC框架中,粘包和拆包问题是必须解决一个问题,因为RPC框架中,各个微服务相互之间都是维系了一个TCP长连接,比如dubbo就是一个全双工的长连接.由于微服务往对方发送信息的时候,所有的请求都是使 ...
- C#下利用封包、拆包原理解决Socket粘包、半包问题(新手篇)
介于网络上充斥着大量的含糊其辞的Socket初级教程,扰乱着新手的学习方向,我来扼要的教一下新手应该怎么合理的处理Socket这个玩意儿. 一般来说,教你C#下Socket编程的老师,很少会教你如何解 ...
随机推荐
- 谈谈传说中的redo log是什么?有啥用?
目录 一.引出 redo log 的作用 二.思考一个问题: 三.redo log block 四.redo log buffer 五.redo log的刷盘时机 六.推荐参数 七.redo log ...
- 跨国合作:Serverless Components 在腾讯云的落地和实践
导语 | Serverless Components 是 Serverless Framework 推出的最新解决⽅案,具有基础设施编排能⼒,开发者通过使⽤ Serverless Components ...
- selenium 淘宝商品分页
通过这行代码确定每页的下一页,因为从淘宝的第4页 xpath就匹配不出下一页的位置#这是面向对象写法,不用的把self. 去掉即可next_button = self.driver.find_elem ...
- 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]
[题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...
- POI2009 KON-Ticket Inspector
题目链接 Description 一辆火车依次经过 \(n\) 个车站,顺序是 \(1, 2, 3, ..., n - 1, n\).给定 \(A_{i, j}\) 表示从 \(i\) 站上车,\(j ...
- 第一章、Docker 简介
笔记内容来自:第一本Docker书 [澳] James Turnbull 著 李兆海 刘斌 巨震 Docker 是一个能够把开发的应用程序自动部署到容器的开源引擎.(由Docker 公司,前dot ...
- 学生证申请Idea
1.地址:https://www.jetbrains.com/shop/eform/students2.英语不好的一键翻译,说明:三五天下来3.上图:
- C 与 C++ 中 指向二维数组的指针进行指针运算
二维数组在概念上是二维的,有行和列,但在内存中所有的数组元素都是连续排列的,它们之间没有"缝隙".以下面的二维数组 nums 为例: 从概念上理解,nums 的分布像一个矩阵,但在 ...
- 从零开始了解多线程 之 深入浅出AQS -- 上
java锁&AQS深入浅出学习--上 上一篇文章中我们一起学习了jvm缓存一致性.多线程间的原子性.有序性.指令重排的相关内容, 这一篇文章便开始和大家一起学习学习AQS(AbstractQu ...
- linux 配置本地yum源,配置国内yum源,配置epel源
目录 一.配置本地yum源 二.配置国内yum源和epel源 一.配置本地yum源 1.挂载ISO镜像 mount -o loop /mnt/yum-iso/CentOS-7-x86_64-DVD-1 ...