1. 阶段定义

MapTask:map----->sort

map:Mapper.map()中将输出的key-value写出之前

sort:Mapper.map()中将输出的key-value写出之后

2. MapTask工作机制

  1. Read阶段

    MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value

  2. Map阶段

    该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

  3. Collect收集阶段

    在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个内存缓冲区中,并且会被Partitioner计算一个分区号,按照先后顺序分配index下标

  4. Spill阶段

  • 即“溢写”,在此阶段有两个重要线程。收集线程负责向缓冲区收集数据,缓冲区初始值为100M,当使用到80%阈值,唤醒溢写线程,溢写线程会将缓冲区已经收集的数据溢写到磁盘。

  • 在溢写前,会对缓冲区中的数据进行排序(快速排序),在排序时,只通过比较key进行排序,只改变index的位置,不交换数据的位置

  • 排序后,按照分区,依次将数据写入到磁盘的临时文件的若干分区中

  • 每次溢写都会生成一个临时文件,当所有的数据都溢写完成之后,会将所有的临时文件片段合并为一个总的文件

  1. Combine阶段
  • 在合并时,将所有的临时文件的相同分区的数据,进行合并,合并后再对所有的数据进行排序(归并排序)

  • 最终生成一个结果文件(output/file.out),同时生成相应的索引文件output/file.out.index,这个文件分为若干分区,每个分区的数据已经按照key进行了排序,等待reduceTask的shuffle线程来拷贝数据!

溢写阶段详情:

  • 步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。

  • 步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。

  • 步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。

MapReduce之MapTask工作机制的更多相关文章

  1. MapReduce框架原理-MapTask工作机制

    MapReduce框架原理-MapTask工作机制 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速 ...

  2. 【大数据】MapTask工作机制

    1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRec ...

  3. MapTask工作机制

    (1)Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value. (2)Map阶段:该节点主要是将解析出的key/value交给用 ...

  4. MapReduce框架原理-MapTask和ReduceTask工作机制

    MapTask工作机制 并行度决定机制 1)问题引出 maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度.那么,mapTask并行任务是否越多越好呢? 2)MapTa ...

  5. 浅谈MapReduce工作机制

    1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRec ...

  6. Hadoop MapReduce 一文详解MapReduce及工作机制

    @ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapRe ...

  7. MapReduce06 MapReduce工作机制

    目录 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 5.2 ReduceTask工作机制 5.3 ReduceTask并行度决定机制 手动设置ReduceTask数量 测试R ...

  8. hadoop MapReduce 工作机制

    摸索了将近一个月的hadoop , 在centos上配了一个伪分布式的环境,又折腾了一把hadoop eclipse plugin,最后终于实现了在windows上编写MapReduce程序,在cen ...

  9. Hadoop入门第三篇-MapReduce试手以及MR工作机制

    MapReduce几个小应用 上篇文章已经介绍了怎么去写一个简单的MR并且将其跑起来,学习一个东西动手还是很有必要的,接下来我们就举几个小demo来体验一下跑起来的快感. demo链接请参照附件:ht ...

随机推荐

  1. 有趣的条漫版 HashMap,25岁大爷都能看懂

    我是风筝,公众号「古时的风筝」,一个兼具深度与广度的程序员鼓励师,一个本打算写诗却写起了代码的田园码农! 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在 ...

  2. centos 6.5 nat方式上网络设置

    1 前提虚拟机采用nat的方式和主机进行通信,这个时候再电脑上会模拟一个vmnet8网卡,如果是host-only对应的是vmnet1,配置一样 vmnet8的虚拟网卡,虚拟机通过vmnet8和主机之 ...

  3. Django REST Framework(一) Serializer和ModelSerializer

    REST Framework概述 Django REST framework是一套基于Django的REST框架,是一个用于构建Web API的功能强大且灵活的工具包. 1.RESTful 简述Rep ...

  4. Python 简明教程 --- 16,Python 高阶函数

    微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 对于那些快速算法,我们总是可以拿一些速度差不多但是更容易理解的算法来替代它们. -- Douglas ...

  5. js页面跳转的问题(跳转到父页面、最外层页面、本页面)

    "window.location.href"."location.href"是本页面跳转 "parent.location.href"是上一 ...

  6. 《UNIX环境高级编程》(APUE) 笔记第四章 - 文件和目录

    4 - 文件和目录 1. 函数 stat.fstat.fstatat 和 lstat #inlcude <sys/stat.h> int stat(const char *restrict ...

  7. 09 . Prometheus监控tomcat+jvm

    List CentOS7.3 prometheus-2.2.1.linux-amd64.tar.gz redis_exporter-v0.30.0.linux-amd64.tar.gz 节点名 IP ...

  8. 第 11 篇:基于 drf-haystack 的文章搜索接口

    作者:HelloGitHub-追梦人物 在 django 博客教程中,我们使用了 django-haystack 和 Elasticsearch 进行文章内容的搜索.django-haystack 默 ...

  9. 构建者模式Builder创建对象

    构建者(Builder)设计模式(又叫生成器设计模式): 当一个类的内部数据过于复杂的时候(通常是负责持有数据的类,比如Config.VO.PO.Entity...),要创建的话可能就需要了解这个类的 ...

  10. JS的一些知识点

    1.介绍一下js的数据类型有哪些,值是如何存储的 JavaScript一共有8种数据类型,其中有7种基本数据类型:Undefined.Null.Boolean.Number.String.Symbol ...