P3295 萌萌哒 题解
题目
一个长度为n的大数,用\(S_1,S_2,S_3...S_n\)表示,其中\(S_i\)表示数的第\(i\)位,\(S_1\)是数的最高位,告诉你一些限制条件,每个条
件表示为四个数,\(l_1,r_1,l_2,r_2\),即两个长度相同的区间,表示子串\(S_{l_1},S_{l_1+1},S+{l_1+2}...S_{r_1}\)与\(S_{l_2},S_{l_2+1},S_{l_2+2}...S_{r2}\)完全相同。比如\(n=6\)时,某限制条件\(l_1=1,r_1=3,l_2=4,r_2=6\),那么\(123123\),\(351351\)均满足条件,但是\(12012\),\(131141\)不满足条件,前者数的长度不为6,后者第二位与第五位不同。问满足以上所有条件的数有多少个。
输入格式
第一行两个数\(n\)和\(m\),分别表示大数的长度,以及限制条件的个数。接下来\(m\)行,对于第\(i\)行,有4个数\(l_{i_1},r_{i_1},l_{i_2},r_{i_2}\),分别表示该限制条件对应的两个区间。
\(1≤n≤10^5,1≤m≤10^5,1≤l_{i_1},r_{i_1},l_{i_2},r_{i_2}≤n\)并且保证\(r_{i_1}-l_{i_1}=r_{i_2}-l_{i_2}\)。
输出格式
一个数,表示满足所有条件且长度为n的大数的个数,答案可能很大,因此输出答案模 \(10^9+7\)的结果即可。
输入样例
4 2
1 2 3 4
3 3 3 3
输出样例
90
题解
这道题使用并查集和ST表
\(f\)是\(ST\)表数组, \(f_{i,j}\)表示\([i,i+2^j-1]\)
一个条件可以拆成\(log\)份,然后再合并。
若\(f_{s,t}\)和\(f_{i,j}\)在同一集合,则\(f_{s,t-1}\)与\(f_{i,j-1}\)以及\(f_{s+2^{t-1}-1,t-1}\)和\(f_{i+2^{j-1}-1,j-1}\)都在同一集合。
为了满足条件,一层一层的做,把下一层的合并,编号大的合进编号小。
设\(tot\)为集合个数
答案就是\(9*10^(tot-1)\)
代码
#include <cmath>
#include <cstdio>
using namespace std;
int n, m, fa[100005][18], ans;
int find(int x, int k) { return fa[x][k] == x ? x : fa[x][k] = find(fa[x][k], k); }
void join(int x, int y, int k) { if ((x = find(x, k)) != (y = find(y, k))) fa[x][k] = y; }
int main() {
scanf("%d %d", &n, &m);
int maxk = floor(log2(n));
for (int i = 1; i <= n; ++i)
for (int k = 0; k <= maxk; ++k) fa[i][k] = i;
for (int i = 1, l1, r1, l2, r2; i <= m; ++i) {
scanf("%d %d %d %d", &l1, &r1, &l2, &r2);
for (int k = maxk; ~k; --k)
if (l1 + (1 << k) - 1 <= r1)
join(l1, l2, k), l1 += 1 << k, l2 += 1 << k;
}
for (int k = maxk; k; --k)
for (int i = 1; i + (1 << k) - 1 <= n; ++i) {
int pos = find(i, k);
join(i, pos, k - 1);
join(i + (1 << k - 1), pos + (1 << k - 1), k - 1);
}
for (int i = 1; i <= n; ++i)
if (fa[i][0] == i) ans = !ans ? 9 : ans * 10ll % 1000000007;
printf("%d\n", ans);
return 0;
}
P3295 萌萌哒 题解的更多相关文章
- 洛谷P3295 [SCOI2016]萌萌哒 题解
洛谷P3295 [SCOI2016]萌萌哒 题目描述 公式粘过来就乱了,还是去洛谷看题吧 分析 如果暴力解决的话就是使用并查集把位数相同的数位并在一起.比如区间[1,2]和区间[3,4]的数字完全相同 ...
- 洛谷P3295 萌萌哒 并查集 + ST表
又切一道紫题!!! 成功的(看了一吨题解之后),我A掉了第二道紫题. 好,我们仔细观察,发现这是一个排列组合问题. 有些限定条件,要相等的地方,我们就用并查集并起来.最后一查有多少个并查集,就有多少个 ...
- 洛谷P3295 萌萌哒 [SCOI2016] 倍增+并查集
正解:倍增+并查集 解题报告: 传送门! 首先不难想到暴力?就考虑把区间相等转化成对应点对相等,然后直接对应点连边,最后求有几个连通块就好辣 然后看下复杂度,修改是O(n2)查询是O(n),就比较容易 ...
- BZOJ2659: [Beijing wc2012]算不出的算式
2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 668 Solved: 366[Submit] ...
- 几道莫名AC的并查集题
那啥那啥 原本今天还是做(看)差分约束的,但是上不去Vjudge我只能来刷并查集了. %%%静萱大佬把那么多年的noip题都刷遍了,我只能刷水题,noip的题实在是太难了不会啊. 第一道:洛谷P202 ...
- Luogu P3295 [SCOI2016]萌萌哒(并查集+倍增)
P3295 [SCOI2016]萌萌哒 题面 题目描述 一个长度为 \(n\) 的大数,用 \(S_1S_2S_3 \cdots S_n\) 表示,其中 \(S_i\) 表示数的第 \(i\) 位, ...
- 【题解】SCOI2006萌萌哒
看到这题,首先想到\(n^{2}\)的暴力,就是用并查集暴力合并两个相等的点.但由于这样会导致反复地访问同一个操作,显然是不能够的.于是我们可以联想这题的特殊性质,就是互相连变的点都是一段一段的区间. ...
- ETO的公开赛T4《对抗水滴》 题解(BY 萌萌哒123456 )
题意: 给你一个\(n*n\)的矩阵A,其中有\(T\)个元素不为零.定义矩阵内元素\((x,y)\)的能量值 \(E[x][y]=\sum_{i=1}^{x}\sum_{j=1}^{y}[A[i][ ...
- [Luogu P3295][SCOI 2016]萌萌哒
先说下暴力做法,如果[l1,r1]和[l2,r2]子串相等等价于两个区间内每个数对应相等.那么可以用并查集暴力维护,把对应相等的数的位置维护到同一个集合里去,最后答案其实就是把每个集合可以放的数个数乘 ...
随机推荐
- vue使用 video.js动态切换视频源视频源不刷新问题
网上的垃圾代码太多,最后翻了video.js的官方文档,就这么简单,浪费了我这么久,注:我这里使用的vue //html <video id="my-player" con ...
- 基于 abp vNext 和 .NET Core 开发博客项目 - 博客接口实战篇(三)
系列文章 基于 abp vNext 和 .NET Core 开发博客项目 - 使用 abp cli 搭建项目 基于 abp vNext 和 .NET Core 开发博客项目 - 给项目瘦身,让它跑起来 ...
- Linux系统如何设置开机自动运行脚本?
大家好,我是良许. 在工作中,我们经常有个需求,那就是在系统启动之后,自动启动某个脚本或服务.在 Windows 下,我们有很多方法可以设置开机启动,但在 Linux 系统下我们需要如何操作呢? Li ...
- Astah类图中使用list<>
如何在类图中表示如下的属性,这个问题困扰了我好久.之前百度找不着任何相关的内容,今天终于在其官方论坛找着了答案. class cMeterRecord { protected: cMeterStatu ...
- [PyQt5]文件对话框QFileDialog的使用
概述选取文件夹 QFileDialog.getExistingDirectory()选择文件 QFileDialog.getOpenFileName()选择多个文件 QFileDialog.getOp ...
- Linux服务器安装python3.6
CentOS 7上默认安装的python版本是2.7.5,系统自带的旧版本python被系统很多其他软件环境依赖,因此不能卸载原Python,直接选择Python3.6.5进行全新安装. 1 安装Py ...
- Python删除一个列表元素的方法
参考资料: https://www.cnblogs.com/xiaodai0/p/10564956.html https://www.cnblogs.com/huangbiquan/articles/ ...
- S7-200 PLC内部+5VDC电源的负载能力
S7-200 PLC内部+5VDC电源的负载能力 S7-200 CPU模块提供DC5V和24V电源:当有扩展模块时,CPU通过I/O总线为其提供5V电源,所有扩展模块的SV电源消耗之和不能超过该CPU ...
- Java 多线程基础(九)join() 方法
Java 多线程基础(九)join 方法 一.join() 方法介绍 join() 定义 Thread 类中的,作用是:把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程.如:线 ...
- 2、尚硅谷_SSM高级整合_使用ajax操作实现页面的查询功能
16.尚硅谷_SSM高级整合_查询_返回分页的json数据.avi 在上一章节的操作中我们是将PageInfo对象存储在request域中,然后list页面解析request域中的对象实现信息的显示. ...