题目描述

传送门

设有N*N的方格图(N<=20,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):



某人从图的左上角的A(1,1) 点出发,可以向下行走,也可以向右走,直到到达右下角的B(n,n)点。在走过的路上(包括起点在内),他可以取走方格中的数(取走后的方格中将变为数字0)。此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入格式

输入的第一行为一个整数N(表示N*N的方格图)

接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出格式

只需输出一个整数,表示2条路径上取得的最大的和

样例

样例输入

8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0

样例输出

67

思路

这道题乍一看真的很能唬人,两遍??能取到的最大解?第一反应是贪心,求一遍最优解,然后再跑一遍,但是很容易证明这个贪心是错误的,我们可以把两遍看成两个人在同时走,那么我们维护四维数组f[i][j][k][l],代表第一个人走到了i,j的位置,第二个人走到了k,l的位置,所取到的最优解,那么有两种情况

1.两个人到达了同一位置,f[i][j][k][l]=max(f[i-1][j][k-1][l]+a[i][j],max(f[i][j-1][k][l-1]+a[i][j],max(f[i-1][j][k][l-1]+a[i][j],f[i][j-1][k-1][l]+a[i][j])));

2.两个人未到达同一位置f[i][j][k][l]=max(f[i-1][j][k-1][l]+a[i][j]+a[k][l],max(f[i][j-1][k][l-1]+a[i][j]+a[k][l],max(f[i-1][j][k][l-1]+a[i][j]+a[k][l],f[i][j-1][k-1][l]+a[i][j]+a[k][l])));

这样问题就解决了。

附上代码



#include<bits/stdc++.h>
using namespace std;
const int maxn=20+5;
int f[maxn][maxn][maxn][maxn];
int n,x,y,w;
int a[maxn][maxn];
int main(){
scanf("%d",&n);
while(1){
scanf("%d%d%d",&x,&y,&w);
if(x==0)break;
a[x][y]=w;
}
f[1][1][1][1]=a[1][1];
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
for(int l=1;l<=n;l++){
if(i==k&&j==l)f[i][j][k][l]=max(f[i-1][j][k-1][l]+a[i][j],max(f[i][j-1][k][l-1]+a[i][j],max(f[i-1][j][k][l-1]+a[i][j],f[i][j-1][k-1][l]+a[i][j])));
else f[i][j][k][l]=max(f[i-1][j][k-1][l]+a[i][j]+a[k][l],max(f[i][j-1][k][l-1]+a[i][j]+a[k][l],max(f[i-1][j][k][l-1]+a[i][j]+a[k][l],f[i][j-1][k-1][l]+a[i][j]+a[k][l])));
}
}
}
}
cout<<f[n][n][n][n];
}

四维DP之方格取数的更多相关文章

  1. [状压dp]HDOJ1565 方格取数(1)

    中文题~~ 题意略 $n\le 20$ ! 很明显是状压! #include <cstdio> #include <cstdlib> #include <cstring& ...

  2. P1004 方格取数(四维dp)

    P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...

  3. 四维dp,传纸条,方格取数

    四维dp例题 四维dp便是维护4个状态的dp方式 拿题来说吧. 1. 洛谷P1004 方格取数 #include<iostream> #include<cstdio> usin ...

  4. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  5. P1004 方格取数——奇怪的dp

    P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例) ...

  6. 方格取数(简单版)+小烈送菜(不知道哪来的题)-----------奇怪的dp增加了!

    一.方格取数: 设有N*N的方格图(N<=20),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0. 某人从图的左上角的A(1,1) 点出发,可以向下行走,也可以向右走,直到到达右下 ...

  7. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  8. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  9. HDU 1565 方格取数(1) 轮廓线dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...

随机推荐

  1. Jmeter连接数据库进行参数化

    实际使用Jmeter进行性能测试或接口测试自动化过程中,很多场景需要从数据库中获取一些关键性参数,或进行一些断言,比较,那么如何进行数据库连接以及怎么获取参数就变得尤为重要 一.下载mysql驱动 1 ...

  2. 遇到Error:Execution failed for task ':app:transformClassesWithDexForDebug'的解决方案

    原因:项目中包含了所有的google play service 解决:只需要使用必要的服务即可 将compile 'com.google.android.gms:play-services:8.1.0 ...

  3. 扩展.Django-权限系统

    目录 Django权限系统auth User 新建用户 认证用户 修改密码 登录 退出登录 只允许登录的用户访问 Group Permission 检查用户权限 管理用户权限 自定义权限 Django ...

  4. LeetCode 76,一题教会你面试算法时的思考套路

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题的第45篇文章,我们一起来看看LeetCode的76题,最小窗口子串Minimum Window Substrin ...

  5. char 型变量中能不能存贮一个中文汉字?为什么?

    在c语言中,char类型占一个字节,而汉字占两个字节,所以不能存储. 在java语言中,char类型占两个字节,而java默认采用Unicode码是16位,所以一个Unicode码占两个字节,java ...

  6. electron-vue报错:Webpack ReferenceError: process is not defined

    electron-vue报错:Webpack ReferenceError: process is not defined 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总 ...

  7. Javascript 16进制转有符号的10进制整数

    在赶项目中开发一个单片机对应的数据接口,需要将一个两字节的十六进制转化为-256~255的10进制数.百度了好久都没有对应且简明的教程,干脆就自己写一篇.   我们都知道JavaScript整数类型有 ...

  8. Serval and Parenthesis Sequence【思维】

    Serval and Parenthesis Sequence 题目链接(点击) Serval soon said goodbye to Japari kindergarten, and began ...

  9. 面试官:线程池如何按照core、max、queue的执行循序去执行?(内附详细解析)

    前言 这是一个真实的面试题. 前几天一个朋友在群里分享了他刚刚面试候选者时问的问题:"线程池如何按照core.max.queue的执行循序去执行?". 我们都知道线程池中代码执行顺 ...

  10. xdoj 2020校赛复盘

    平时写东西都不喜欢复盘,这肯定不是一个好习惯,感觉每次花好几个小时甚至好几天写题目然后没写出来也不去看题解是一种很蠢的行为( 花了这么久时间打校赛,虽然水平很low,数据结构也不太会用,还是记录一下自 ...