HDU2837 Calculation(指数循环节)题解
题意:
已知\(f(0)=1,f(n)=(n\%10)^{f(n/10)}\),求\(f(n)\mod m\)
思路:
由扩展欧拉定理可知:当\(b>=m\)时,\(a^b\equiv a^{b\%\varphi(m)+\varphi(m)}\mod m\),那么我们可以通过这个式子直接去递归求解。
在递归的时候每次给下一个的模数都是\(phi(mod)\),那么我们求出来之后,怎么知道要不要再加\(phi(m)\)?
我们可以在每次返回的时候用一个特殊的快速幂返回正确的值。然后每次特判返回值的时候都要一样:
a = mod? a % mod + mod : a
ll ksm(ll a, ll b, ll mod){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a;
if(ret >= mod){
ret = ret % mod + mod;
}
a = a * a;
if(a >= mod){
a = a % mod + mod;
}
b >>= 1;
}
return ret;
}
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 1e5 + 5;
const int MAXM = 3e6;
const ll MOD = 998244353;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
ll euler(ll n){
ll res = n, a = n;
for(int i = 2; i * i <= a; i++){
if(a % i == 0){
res = res / i * (i - 1);
while(a % i == 0) a/= i;
}
}
if(a > 1) res = res / a * (a - 1);
return res;
}
ll ksm(ll a, ll b, ll mod){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a;
if(ret >= mod){
ret = ret % mod + mod;
}
a = a * a;
if(a >= mod){
a = a % mod + mod;
}
b >>= 1;
}
return ret;
}
ll f(ll a, ll mod){
if(a == 0) return 1 >= mod? 1 % mod + mod : 1;
if(mod == 1) return a >= mod? a % mod + mod : a; //剪枝
ll phm = euler(mod);
ll b = f(a / 10, phm);
return ksm(a % 10, b, mod);
}
int main(){
int T;
scanf("%d", &T);
while(T--){
ll n, m;
scanf("%lld%lld", &n, &m);
printf("%lld\n", f(n, m) % m); //这里要取模
}
return 0;
}
HDU2837 Calculation(指数循环节)题解的更多相关文章
- hdu 2837 Calculation 指数循环节套路题
Calculation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 4335 What is N?(指数循环节)题解
题意: 询问有多少数\(n\)满足\(n^{n!}\equiv b\mod p \land\ n\in[1,M]\),数据范围:\(M\leq2^{64}-1,p\leq1e5\) 思路: 这题显然要 ...
- hdu 5895 Mathematician QSC 指数循环节+矩阵快速幂
Mathematician QSC Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- 指数循环节&欧拉降幂
证明:https://www.cnblogs.com/maijing/p/5046628.html 注意使用条件(B的范围) 例题: FZU1759 HDU2837 ZOJ1674 HDU4335
- 指数循环节 求A的B次方模C
phi(c)为欧拉函数, 欧拉定理 : 对于互质的正整数 a 和 n ,有 aφ(n) ≡ 1 mod n . A^x = A^(x % Phi(C) + Phi(C)) (mod C) (x & ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- HDU 1358 Period(KMP+最小循环节)题解
思路: 这里只要注意一点,就是失配值和前后缀匹配值的区别,不懂的可以看看这里,这题因为对子串也要判定,所以用前后缀匹配值,其他的按照最小循环节做 代码: #include<iostream> ...
- HDU 3746 Cyclic Nacklace(KMP+最小循环节)题解
思路: 最小循环节的解释在这里,有人证明了那么就很好计算了 之前对KMP了解不是很深啊,就很容易做错,特别是对fail的理解 注意一下这里getFail的不同含义 代码: #include<io ...
- 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解
题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...
随机推荐
- layui表格前端格式化时间戳字段
layui.use(['util','table'], function(){ var table = layui.table; var util = layui.util; //... ...
- PAT练习num2-挖掘机技术哪家强
为了用事实说明挖掘机技术到底哪家强,PAT 组织了一场挖掘机技能大赛.现请你根据比赛结果统计出技术最强的那个学校. 输入格式: 输入在第 1 行给出不超过 1 的正整数 N,即参赛人数.随后 N 行, ...
- 面试常问的ArrayQueue底层实现
public class ArrayQueue<T> extends AbstractList<T>{ //定义必要的属性,容量.数组.头指针.尾指针 private int ...
- winform 扫码识别二维码
因为公司业务需求,需要在Windows系统下调用摄像头识别二维码需求,就有了这个功能. 我根据网上网友提供的一些资料,自己整合应用到项目中,效果还不错(就是感觉像素不是太好) 现在将调用摄像头+识别二 ...
- Scrapy——將爬取圖片下載到本地
1. Spider程序: 1 import scrapy, json 2 from UnsplashImageSpider.items import ImageItem 3 4 class Unspl ...
- 前端面试之ES6中的继承!
前端面试之ES6中的继承! ES6之前并没有给我们提供 extends继承.我们可以通过构造函数+原型对象模拟实现继承,被称为组合继承. 1 call() 两个作用: 1 调用这个函数! 2 修改函数 ...
- Docker是如何实现隔离的
Docker是如何实现隔离的 2.进程的隔离 4.文件的隔离 5.资源的限制 7.与传统虚拟机技术的区别 原文地址: 微信公众号:<鲁智深菜园子>:Docker是如何实现隔离的 # 1.运 ...
- redis学习教程一《Redis的安装和配置》
redis学习教程一<Redis的安装和配置> Redis的优点 以下是Redis的一些优点. 异常快 - Redis非常快,每秒可执行大约110000次的设置(SET)操作,每秒大约可执 ...
- java架构《并发线程高级篇一》
本章主要记录讲解并发线程的线程池.java.util.concurrent工具包里面的工具类. 一:Executor框架: Executors创建线程池的方法: newFixedThreadPool( ...
- python模块----pymysql模块 (连接MySQL数据库)
pymysql模块是专门用来连接mysql数据库的模块,是非标准库模块,需要pip下载 下载 pip install pymysql 查询 import pymysql # 打开数据库连接 db = ...