detect data races The cost of race detection varies by program, but for a typical program, memory usage may increase by 5-10x and execution time by 2-20x.
小结:
1、
conflicting access
2、性能危害 优化
The cost of race detection varies by program, but for a typical program, memory usage may increase by 5-10x and execution time by 2-20x.
3、典型案例与修复
Accidentally shared variable
// ParallelWrite writes data to file1 and file2, returns the errors.
func ParallelWrite(data []byte) chan error {
res := make(chan error, 2)
f1, err := os.Create("file1")
if err != nil {
res <- err
} else {
go func() {
// This err is shared with the main goroutine,
// so the write races with the write below.
_, err = f1.Write(data)
res <- err
f1.Close()
}()
}
f2, err := os.Create("file2") // The second conflicting write to err.
if err != nil {
res <- err
} else {
go func() {
_, err = f2.Write(data)
res <- err
f2.Close()
}()
}
return res
}
The fix is to introduce new variables in the goroutines (note the use of :=
):
...
_, err := f1.Write(data)
...
_, err := f2.Write(data)
...
Primitive unprotected variable ¶
Data races can happen on variables of primitive types as well (bool
, int
, int64
, etc.), as in this example:
type Watchdog struct{ last int64 } func (w *Watchdog) KeepAlive() {
w.last = time.Now().UnixNano() // First conflicting access.
} func (w *Watchdog) Start() {
go func() {
for {
time.Sleep(time.Second)
// Second conflicting access.
if w.last < time.Now().Add(-10*time.Second).UnixNano() {
fmt.Println("No keepalives for 10 seconds. Dying.")
os.Exit(1)
}
}
}()
}
Even such "innocent" data races can lead to hard-to-debug problems caused by non-atomicity of the memory accesses, interference with compiler optimizations, or reordering issues accessing processor memory .
A typical fix for this race is to use a channel or a mutex. To preserve the lock-free behavior, one can also use the sync/atomic
package.
type Watchdog struct{ last int64 } func (w *Watchdog) KeepAlive() {
atomic.StoreInt64(&w.last, time.Now().UnixNano())
} func (w *Watchdog) Start() {
go func() {
for {
time.Sleep(time.Second)
if atomic.LoadInt64(&w.last) < time.Now().Add(-10*time.Second).UnixNano() {
fmt.Println("No keepalives for 10 seconds. Dying.")
os.Exit(1)
}
}
}()
}
Unsynchronized send and close operations
As this example demonstrates, unsynchronized send and close operations on the same channel can also be a race condition:
c := make(chan struct{}) // or buffered channel // The race detector cannot derive the happens before relation
// for the following send and close operations. These two operations
// are unsynchronized and happen concurrently.
go func() { c <- struct{}{} }()
close(c)
According to the Go memory model, a send on a channel happens before the corresponding receive from that channel completes. To synchronize send and close operations, use a receive operation that guarantees the send is done before the close:
c := make(chan struct{}) // or buffered channel go func() { c <- struct{}{} }()
<-c
close(c)
4、
数据竞争产生场景:
1、循环计数
Race on loop counter
2、意外地共享变量
Accidentally shared variable
3、没有被保护的全局变量
Unprotected global variable
4、没有被保护的基本类型
Primitive unprotected variable
5、没有同步地在同样的chan上收发操作
Unsynchronized send and close operations
How to detect data races · YourBasic Go https://yourbasic.org/golang/detect-data-races/
Data races can happen easily and are hard to debug. Luckily, the Go runtime is often able to help.
Use -race
to enable the built-in data race detector.
$ go test -race [packages]
$ go run -race [packages]
Example
Here’s a program with a data race:
package main
import "fmt"
func main() {
i := 0
go func() {
i++ // write
}()
fmt.Println(i) // concurrent read
}
Running this program with the -race
options tells us that there’s a race between the write at line 7 and the read at line 9:
$ go run -race main.go
0
==================
WARNING: DATA RACE
Write by goroutine 6:
main.main.func1()
/tmp/main.go:7 +0x44
Previous read by main goroutine:
main.main()
/tmp/main.go:9 +0x7e
Goroutine 6 (running) created at:
main.main()
/tmp/main.go:8 +0x70
==================
Found 1 data race(s)
exit status 66
Details
The data race detector does not perform any static analysis. It checks the memory access in runtime and only for the code paths that are actually executed.
It runs on darwin/amd64, freebsd/amd64, linux/amd64 and windows/amd64.
The overhead varies, but typically there’s a 5-10x increase in memory usage, and 2-20x increase in execution time.
Data Race Detector
Introduction
Data races are among the most common and hardest to debug types of bugs in concurrent systems. A data race occurs when two goroutines access the same variable concurrently and at least one of the accesses is a write. See the The Go Memory Model for details.
Here is an example of a data race that can lead to crashes and memory corruption:
func main() {
c := make(chan bool)
m := make(map[string]string)
go func() {
m["1"] = "a" // First conflicting access.
c <- true
}()
m["2"] = "b" // Second conflicting access.
<-c
for k, v := range m {
fmt.Println(k, v)
}
}
Usage
To help diagnose such bugs, Go includes a built-in data race detector. To use it, add the -race
flag to the go command:
$ go test -race mypkg // to test the package
$ go run -race mysrc.go // to run the source file
$ go build -race mycmd // to build the command
$ go install -race mypkg // to install the package
Report Format
When the race detector finds a data race in the program, it prints a report. The report contains stack traces for conflicting accesses, as well as stacks where the involved goroutines were created. Here is an example:
WARNING: DATA RACE
Read by goroutine 185:
net.(*pollServer).AddFD()
src/net/fd_unix.go:89 +0x398
net.(*pollServer).WaitWrite()
src/net/fd_unix.go:247 +0x45
net.(*netFD).Write()
src/net/fd_unix.go:540 +0x4d4
net.(*conn).Write()
src/net/net.go:129 +0x101
net.func·060()
src/net/timeout_test.go:603 +0xaf Previous write by goroutine 184:
net.setWriteDeadline()
src/net/sockopt_posix.go:135 +0xdf
net.setDeadline()
src/net/sockopt_posix.go:144 +0x9c
net.(*conn).SetDeadline()
src/net/net.go:161 +0xe3
net.func·061()
src/net/timeout_test.go:616 +0x3ed Goroutine 185 (running) created at:
net.func·061()
src/net/timeout_test.go:609 +0x288 Goroutine 184 (running) created at:
net.TestProlongTimeout()
src/net/timeout_test.go:618 +0x298
testing.tRunner()
src/testing/testing.go:301 +0xe8
Options
The GORACE
environment variable sets race detector options. The format is:
GORACE="option1=val1 option2=val2"
The options are:
log_path
(defaultstderr
): The race detector writes its report to a file namedlog_path.pid
. The special namesstdout
andstderr
cause reports to be written to standard output and standard error, respectively.exitcode
(default66
): The exit status to use when exiting after a detected race.strip_path_prefix
(default""
): Strip this prefix from all reported file paths, to make reports more concise.history_size
(default1
): The per-goroutine memory access history is32K * 2**history_size elements
. Increasing this value can avoid a "failed to restore the stack" error in reports, at the cost of increased memory usage.halt_on_error
(default0
): Controls whether the program exits after reporting first data race.atexit_sleep_ms
(default1000
): Amount of milliseconds to sleep in the main goroutine before exiting.
Example:
$ GORACE="log_path=/tmp/race/report strip_path_prefix=/my/go/sources/" go test -race
Excluding Tests
When you build with -race
flag, the go
command defines additional build tag race
. You can use the tag to exclude some code and tests when running the race detector. Some examples:
// +build !race package foo // The test contains a data race. See issue 123.
func TestFoo(t *testing.T) {
// ...
} // The test fails under the race detector due to timeouts.
func TestBar(t *testing.T) {
// ...
} // The test takes too long under the race detector.
func TestBaz(t *testing.T) {
// ...
}
How To Use
To start, run your tests using the race detector (go test -race
). The race detector only finds races that happen at runtime, so it can't find races in code paths that are not executed. If your tests have incomplete coverage, you may find more races by running a binary built with -race
under a realistic workload.
Typical Data Races
Here are some typical data races. All of them can be detected with the race detector.
Race on loop counter
func main() {
var wg sync.WaitGroup
wg.Add(5)
for i := 0; i < 5; i++ {
go func() {
fmt.Println(i) // Not the 'i' you are looking for.
wg.Done()
}()
}
wg.Wait()
}
The variable i
in the function literal is the same variable used by the loop, so the read in the goroutine races with the loop increment. (This program typically prints 55555, not 01234.) The program can be fixed by making a copy of the variable:
func main() {
var wg sync.WaitGroup
wg.Add(5)
for i := 0; i < 5; i++ {
go func(j int) {
fmt.Println(j) // Good. Read local copy of the loop counter.
wg.Done()
}(i)
}
wg.Wait()
}
Accidentally shared variable
// ParallelWrite writes data to file1 and file2, returns the errors.
func ParallelWrite(data []byte) chan error {
res := make(chan error, 2)
f1, err := os.Create("file1")
if err != nil {
res <- err
} else {
go func() {
// This err is shared with the main goroutine,
// so the write races with the write below.
_, err = f1.Write(data)
res <- err
f1.Close()
}()
}
f2, err := os.Create("file2") // The second conflicting write to err.
if err != nil {
res <- err
} else {
go func() {
_, err = f2.Write(data)
res <- err
f2.Close()
}()
}
return res
}
The fix is to introduce new variables in the goroutines (note the use of :=
):
...
_, err := f1.Write(data)
...
_, err := f2.Write(data)
...
Unprotected global variable
If the following code is called from several goroutines, it leads to races on the service
map. Concurrent reads and writes of the same map are not safe:
var service map[string]net.Addr func RegisterService(name string, addr net.Addr) {
service[name] = addr
} func LookupService(name string) net.Addr {
return service[name]
}
To make the code safe, protect the accesses with a mutex:
var (
service map[string]net.Addr
serviceMu sync.Mutex
) func RegisterService(name string, addr net.Addr) {
serviceMu.Lock()
defer serviceMu.Unlock()
service[name] = addr
} func LookupService(name string) net.Addr {
serviceMu.Lock()
defer serviceMu.Unlock()
return service[name]
}
Primitive unprotected variable
Data races can happen on variables of primitive types as well (bool
, int
, int64
, etc.), as in this example:
type Watchdog struct{ last int64 } func (w *Watchdog) KeepAlive() {
w.last = time.Now().UnixNano() // First conflicting access.
} func (w *Watchdog) Start() {
go func() {
for {
time.Sleep(time.Second)
// Second conflicting access.
if w.last < time.Now().Add(-10*time.Second).UnixNano() {
fmt.Println("No keepalives for 10 seconds. Dying.")
os.Exit(1)
}
}
}()
}
Even such "innocent" data races can lead to hard-to-debug problems caused by non-atomicity of the memory accesses, interference with compiler optimizations, or reordering issues accessing processor memory .
A typical fix for this race is to use a channel or a mutex. To preserve the lock-free behavior, one can also use the sync/atomic
package.
type Watchdog struct{ last int64 } func (w *Watchdog) KeepAlive() {
atomic.StoreInt64(&w.last, time.Now().UnixNano())
} func (w *Watchdog) Start() {
go func() {
for {
time.Sleep(time.Second)
if atomic.LoadInt64(&w.last) < time.Now().Add(-10*time.Second).UnixNano() {
fmt.Println("No keepalives for 10 seconds. Dying.")
os.Exit(1)
}
}
}()
}
Unsynchronized send and close operations
As this example demonstrates, unsynchronized send and close operations on the same channel can also be a race condition:
c := make(chan struct{}) // or buffered channel // The race detector cannot derive the happens before relation
// for the following send and close operations. These two operations
// are unsynchronized and happen concurrently.
go func() { c <- struct{}{} }()
close(c)
According to the Go memory model, a send on a channel happens before the corresponding receive from that channel completes. To synchronize send and close operations, use a receive operation that guarantees the send is done before the close:
c := make(chan struct{}) // or buffered channel go func() { c <- struct{}{} }()
<-c
close(c)
Supported Systems
The race detector runs on linux/amd64
, linux/ppc64le
, linux/arm64
, freebsd/amd64
, netbsd/amd64
, darwin/amd64
, and windows/amd64
.
Runtime Overhead
The cost of race detection varies by program, but for a typical program, memory usage may increase by 5-10x and execution time by 2-20x.
The race detector currently allocates an extra 8 bytes per defer
and recover
statement. Those extra allocations are not recovered until the goroutine exits. This means that if you have a long-running goroutine that is periodically issuing defer
and recover
calls, the program memory usage may grow without bound. These memory allocations will not show up in the output of runtime.ReadMemStats
or runtime/pprof
.
detect data races The cost of race detection varies by program, but for a typical program, memory usage may increase by 5-10x and execution time by 2-20x.的更多相关文章
- Could not load file or assembly 'System.Data.SQLite' or one of its dependencies. An attempt was made to load a program
今天同事在一个服务器(winserver 2008 x64)上新建了一个IIS(7) 网站,但是报了如下错误: Could not load file or assembly 'System.Data ...
- 28 Data Race Detector 数据种类探测器:数据种类探测器手册
Data Race Detector 数据种类探测器:数据种类探测器手册 Introduction Usage Report Format Options Excluding Tests How To ...
- A record--Offline deployment of Big Data Platform CDH Cluster
A record--Offline deployment of Big Data Platform CDH Cluster Tags: Cloudera-Manager CDH Hadoop Depl ...
- 朝花夕拾之--大数据平台CDH集群离线搭建
body { border: 1px solid #ddd; outline: 1300px solid #fff; margin: 16px auto; } body .markdown-body ...
- 解压版MySQL安装说明
一.复制my.ini到MySQL解压的目录 例如:E:\MySQL 二.修改my.ini第39~40行 basedir = "E:\\MySQL" datadir = " ...
- AIX日常维护
1 /etc/security/limits与limit命令 AIX 5.3上 下面是文件/etc/security/limits文件里面有关软限制和硬限制的部分. * * Sizes are in ...
- MySQL 5.5.35 单机多实例配置详解
一.前言 二.概述 三.环境准备 四.安装MySQL 5.5.35 五.新建支持多实例的配置文件(我这里配置的是四个实例) 六.初始化多实例数据库 七.提供管理脚本 mysqld_multi.serv ...
- 【MySQL for Mac】终极解决——MySQL在Mac的字符集设置
这个问题烦恼一天了,现在终于得以解决.分享给大家 首先贴出来,亲测不可行的博客连接: http://www.2cto.com/database/201305/215563.html http://bl ...
- (转载)绿色版Mysql的安装配置
本文出自于:http://johnnyhg.javaeye.com/blog/245544 一.下载MySQL http://www.mysql.org/downloads 我下载的是mysql-no ...
随机推荐
- python初学者-鸡兔同笼简单算法
鸡兔同笼问题.假设共有鸡.兔30只,脚90只.求鸡.兔各有多少只 使用for循环快速解决鸡兔同笼问题 for ji in range(0,31): if 2*ji+(30-ji)*4==90: pri ...
- 使用@Cacheable注解时,Redis连不上,直接调用方法内部的解决方案
最近redis 域名一致解析错误,导致业务多了很多异常.那么如何在这种情况下直接访问数据库,而不是报错呢 1. 解决方案 其实很简单,在配置 redis 时,只需要多一项配置,继承 CachingCo ...
- SpringBoot默认首页配置
@Configuration public class DefaultView extends WebMvcConfigurerAdapter { @Override public void addV ...
- 毕大从自身设计HSF的角度出发谈服务化这回事
服务化的过去.现在和未来 原创: bluedavy HelloJava 9月18日 服务化毫无疑问是技术圈一直火热的buzzword,而且其实已经非常多年了,这在日益更新的技术圈还挺神奇的,作为在服 ...
- LVS之2---基于LVS负载均衡集群架构
LVS之2---基于LVS负载均衡集群架构实现 目录 LVS之2---基于LVS负载均衡集群架构实现 ipvsadm software package Options 常用命令 保存及重载规则 内存映 ...
- 安装cmake过程g++: 错误:unrecognized command line option ‘-std=gnu++14’
问题根因 这个错误一般是gcc/g++版本太低导致的 疑问 我本地明明安装的是高版本的gcc/g++为何说是低版本的呢,有图为证: 这主要是因为你安装了多个版本的gcc/g++,但是默认(/usr/b ...
- 7.24,《C Primer Plus》复习第十五章第二小题
编写一个程序,通过命令行参数读取两个二进制字符串,对这两个二进制数使用~运算符,&运算符.|运算符,并以二进制字符串形式打印结果(如果无法使用命令行环境,可以通过交互式让程序读取字符串) 编写 ...
- 常用的Git命令清单
目录 名词解释 开卷必读 一. 新建代码库 二.配置 三. 忽略某个文件的改动 四. 增加/删除文件 五. 代码提交 六. 分支 七. 标签 八. 查看信息 九. 远程同步 十. 撤销 十一. Git ...
- window10搭建pyspark(超级详细)
一.组件版本说明 Java JDK:1.8.0_144 spark-2.4.3-bin-hadoop2.7hadoop-2.7.7 scala-2.12.8 hadooponwindows-maste ...
- WDCP v3 安装
---已更新至3.0.3---经过近期的努力,wdCP_v3正式版终于可以和大家见面了v3功能预览1 底层完全重新架构,更安全稳定,省资源更高效2 安装更简单,快速与方便3 功能更强大和易扩展,且完美 ...