Description

小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验。实验用到的图片集一共有 N 张图片,编号为 1 到 N。实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选取的图片, 然后小D 需要根据他自己主观上的判断确定这两张图片谁好谁坏,或者这两张图片质量差不多。 用符号“<”、“>”和“=”表示图片 x和y(x、y为图片编号)之间的比较:如果上下文中 x 和 y 是图片编号,则 x<y 表示图片 x“质量优于”y,x>y 表示图片 x“质量差于”y,x=y表示图片 x和 y“质量相同”;也就是说,这种上下文中,“<”、“>”、“=”分别是质量优于、质量差于、质量相同的意思;在其他上下文中,这三个符号分别是小于、大于、等于的含义。图片质量比较的推理规则(在 x和y是图片编号的上下文中):(1)x < y等价于 y > x。(2)若 x < y 且y = z,则x < z。(3)若x < y且 x = z,则 z < y。(4)x=y等价于 y=x。(5)若x=y且 y=z,则x=z。 实验中,小 D 需要对一些图片对(x, y),给出 x < y 或 x = y 或 x > y 的主观判断。小D 在做完实验后, 忽然对这个基于局部比较的实验的一些全局性质产生了兴趣。在主观实验数据给定的情形下,定义这 N 张图片的一个合法质量序列为形如“x1 R1 x2 R2 x3 R3 …xN-1 RN-1 xN”的串,也可看作是集合{ xi Ri xi+1|1<=i<=N-1},其中 xi为图片编号,x1,x2,…,xN两两互不相同(即不存在重复编号),Ri为<或=,“合法”是指这个图片质量序列与任何一对主观实验给出的判断不冲突。 例如: 质量序列3 < 1 = 2 与主观判断“3 > 1,3 = 2”冲突(因为质量序列中 3<1 且1=2,从而3<2,这与主观判断中的 3=2 冲突;同时质量序列中的 3<1 与主观判断中的 3>1 冲突) ,但与主观判断“2 = 1,3 < 2”  不冲突;因此给定主观判断“3>1,3=2”时,1<3=2 和1<2=3 都是合法的质量序列,3<1=2 和1<2<3都是非法的质量序列。由于实验已经做完一段时间了,小D 已经忘了一部分主观实验的数据。对每张图片 i,小 D 都最多只记住了某一张质量不比 i 差的另一张图片 Ki。这些小 D 仍然记得的质量判断一共有 M 条(0 <= M <= N),其中第i 条涉及的图片对为(KXi, Xi),判断要么是KXi   < Xi  ,要么是KXi = Xi,而且所有的Xi互不相同。小D 打算就以这M 条自己还记得的质量判断作为他的所有主观数据。现在,基于这些主观数据,我们希望你帮小 D 求出这 N 张图片一共有多少个不同的合法质量序列。我们规定:如果质量序列中出现“x = y”,那么序列中交换 x和y的位置后仍是同一个序列。因此: 1<2=3=4<5 和1<4=2=3<5 是同一个序列, 1 < 2 = 3 和 1 < 3 = 2 是同一个序列,而1 < 2 < 3 与1 < 2 = 3是不同的序列,1<2<3和2<1<3 是不同的序列。由于合法的图片质量序列可能很多, 所以你需要输出答案对10^9 + 7 取模的结果
 

Input

第一行两个正整数N,M,分别代表图片总数和小D仍然记得的判断的条数;
接下来M行,每行一条判断,每条判断形如”x < y”或者”x = y”。 

Output

输出仅一行,包含一个正整数,表示合法质量序列的数目对 10^9+7取模的结果。

Sample Input

5 4
1 < 2
1 < 3
2 < 4
1 = 5

Sample Output

5

HINT

不同的合法序列共5个,如下所示:

1 = 5 < 2 < 3 < 4 
1 = 5 < 2 < 4 < 3 
1 = 5 < 2 < 3 = 4 
1 = 5 < 3 < 2 < 4 
1 = 5 < 2 = 3 < 4 
100%的数据满足N<=100。  

Source

这个题如果是第一次碰到的话还是有难度的,以至于当年CJ没有一个人做出这个题;

首先我们把带等号的用并查集并起来,然后题目说明了对于每个点至多记住一个<他的点;

那么这样构成了森林的关系,然后我们加一个超级根,然后考虑如何树型DP;

首先状态就比较难设:dp[i][j],表示i的子树内有j个等价类的方案数;

我们考虑如何合并(x,i),(y,j)两棵树的答案,首先枚举合并后的等价类的个数k,(max(i,j),i+j);

现在问题的转化为有k个盒子,i个红球(有顺序),j个蓝球(有顺序);

要保证每个盒子内不能有相同颜色的球(可以有颜色不同的),且每个盒子必须有球,而且红球和蓝球内部的顺序不能变;

那么答案其实是:

首先把红球全部放进去,然后用蓝球去填还没有放球的k-i个盒子,在把剩余的蓝球放入有了红球的盒子i个盒子中;

然后我们就可以愉快地转移了,记得当前这个点先不要放进去,因为他不能和子树内的点构成等价类,所以要最后加进去;

自己注意实现细节即可;复杂度为O(n^3)。。。

//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=105;
const int Mod=1e9+7;
int fa[N],size[N];
int head[N],to[N],nxt[N],cnt,n,m;
ll dp[N][N],g[N],c[N][N];
int q[N],tt,du[N];
void lnk(int x,int y){
du[y]++;
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
}
int find(int x){
if(x!=fa[x]) fa[x]=find(fa[x]);
return fa[x];
}
void dfs(int x,int f){
for(int p=head[x];p;p=nxt[p]){
int y=to[p];if(y==f) continue;
dfs(y,x);
if(!size[x]){
for(int i=1;i<=size[y];i++) g[i]+=dp[y][i];
size[x]+=size[y];
for(int i=1;i<=size[y];i++) dp[x][i]=g[i];
}
else{
for(int i=1;i<=size[x];i++){
for(int j=1;j<=size[y];j++){
for(int k=max(i,j);k<=i+j;k++){
(g[k]+=dp[x][i]*dp[y][j]%Mod*c[k][i]%Mod*c[i][j-(k-i)]%Mod)%=Mod;
}
}
}
size[x]+=size[y];
for(int i=1;i<=size[x];i++) dp[x][i]=g[i];
}
}
if(x){
size[x]++;
for(int i=1;i<=size[x];i++) dp[x][i]=g[i-1];
if(size[x]==1) dp[x][1]=1;
}
else{
for(int i=1;i<=size[x];i++) dp[x][i]=g[i];
}
memset(g,0,sizeof(g));
}
struct data{
int x,y;
}e[N];
int main(){
freopen("pairwise.in","r",stdin);
freopen("pairwise.out","w",stdout);
scanf("%d%d",&n,&m);int tot=0;
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=m;i++){
int x,y;char s[10];
scanf("%d",&x);scanf("%s",s+1);scanf("%d",&y);
if(s[1]=='<') e[++tot]=(data){x,y};
if(s[1]=='=') {
int u=find(x),v=find(y);
if(u!=v) fa[u]=v;
}
}
for(int i=1;i<=tot;i++){
if(find(e[i].x)!=find(e[i].y)) lnk(find(e[i].x),find(e[i].y));
else {puts("0");return 0;}
}
for(int i=1;i<=n;i++) if(find(i)==i) q[++tt]=i;
for(int i=1;i<=tt;i++) if(du[q[i]]==0) lnk(0,q[i]);
for(int i=0;i<=n;++i) c[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%Mod;
}
dfs(0,0);
ll ans=0;for(int i=1;i<=size[0];i++) (ans+=dp[0][i])%=Mod;
printf("%lld\n",ans);
return 0;
}

bzoj 4013: [HNOI2015]实验比较的更多相关文章

  1. 4013: [HNOI2015]实验比较

    4013: [HNOI2015]实验比较 链接 分析: 首先把等号用并查集合并起来. 由于只存在最多一个质量不比i差的数,发现这是森林.若x<y,连边x->y.于是建虚拟根节点0. 然后树 ...

  2. 【BZOJ】4013: [HNOI2015]实验比较

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4013 中第i 条涉及的图片对为(KXi, Xi),判断要么是KXi < Xi ,要么 ...

  3. [BZOJ4013][HNOI2015]实验比较(树形DP)

    4013: [HNOI2015]实验比较 Time Limit: 5 Sec  Memory Limit: 512 MBSubmit: 756  Solved: 394[Submit][Status] ...

  4. 【BZOJ4013】[HNOI2015]实验比较(动态规划)

    [BZOJ4013][HNOI2015]实验比较(动态规划) 题面 BZOJ 洛谷 题解 看题目意思就是给你一棵树,连边表示强制顺序关系.然后你要给点染色,在满足顺序关系的情况下,将序列染成若干个颜色 ...

  5. BZOJ 4013 【HNOI2015】 实验比较

    题目链接:实验比较 如果我们把相等关系全部缩起来的话,这道题给出的小于关系如果有环,那么就是不合法的,否则就构成了一片森林. 定义等于号连起来的所有变量看做一个块. 然后我们就可以令\(f_{i,j} ...

  6. BZOJ 4013/Luogu P3240 [HNOI2015] 实验比较 (树形DP)

    题目传送门 分析 放一个dalao博客: xyz32768 的博客,看完再回来看本蒟蒻的口胡吧(其实嘛-不回来也行) 精髓是合并的方案数的计算,至于为什么是Ci−1j−1\large C_{i-1}^ ...

  7. BZOJ 4013 实验比较

    Description 小D被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有\(N\)张图片,编号为\(1\)到\(N\).实验分若干轮进行,在每轮实验中,小\(D\)会被要 ...

  8. bzoj 4010 [HNOI2015]菜肴制作——贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4010 和 bzoj 2535 差不多.因为当前怎么决策与该点后面连的点的标号情况有关,所以按 ...

  9. bzoj 4010: [HNOI2015]菜肴制作 拓扑排序

    题目链接: 题目 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory Limit: 512 MB 问题描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴 ...

随机推荐

  1. 安卓自定义控件(四)实现自定义Layout

    本来我是不准备写这篇文章的,我实在想不出有什么样奇怪的理由,会去继承ViewGroup然后自定义一个布局,大概是我的项目经验还不够吧,想了好久,想到了这样一个需求: 需求 如图:在项目中经常有一个这样 ...

  2. 高频dom操作和页面性能优化(转载)

    作者:gxt19940130 原文:https://feclub.cn/post/content/dom 一.DOM操作影响页面性能的核心问题 通过js操作DOM的代价很高,影响页面性能的主要问题有如 ...

  3. JSP8

     一.EL表达式 JSP表达式语言(EL)使得访问存储在JavaBean中的数据变得非常简单.JSP EL既可以用来创建算术表达式也可以用来创建逻辑表达式.在JSP EL表达式内可以使用整型数,浮点数 ...

  4. upload 简单的封装

    upload 最简单的封装类 <?php    class Upload{        public function Up($files){            if($files['na ...

  5. 十招让Ubuntu 16.04用起来更得心应手(转)

    ubuntu 16.04是一种长期支持版本(LTS),是Canonical承诺发布五年的更新版.也就是说,你可以让这个版本在电脑上运行五年! 这样一来,一开始就设置好显得特别重要.你应该确保你的软件是 ...

  6. 欢迎大家关注我的微信公众号(nangongkuo)

    欢迎大家关注我的微信公众号,在这个公众号里面我会给大家分享我学习过程中分享给大家的一些技术性的东西,和一些生活经验的总结分享.

  7. node.js之第一天

    一.http模块 //require表示引包,引包就是引用自己的一个特殊功能 var http = require("http"); //创建服务器,参数是一个回调函数,表示如果有 ...

  8. LDA数学八卦笔记(一)Gamma函数

    Technorati Tags: LDA主题模型

  9. greenplum在执行vacuum和insert产生死锁问题定位及解决方案

    首先声明:未经本人同意,请勿转载,谢谢! 本人使用自己编译的开源版本的greenplum数据库用于学习,版本为PostgreSQL 8.3.23 (Greenplum Database 4.3.99. ...

  10. EventBus在Android中的简单使用

    EventBus是一个方便与Android中各组件通信的开源框架,开源地址;https://github.com/greenrobot/EventBus.EventBus功能非常强大 ,今天在做一个功 ...