Go 数据结构--二分查找树

今天开始一个Go实现常见数据结构的系列吧。有时间会更新其他数据结构。

一些概念

二叉树:二叉树是每个节点最多有两个子树的树结构。

完全二叉树:若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树

满二叉树:除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

平衡二叉树:平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

二叉查找树:它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树

二叉搜索树原理

二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树存储结构中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索,插入,删除的复杂度等于树高,O(log(n)).

实现

上述基本是百度百科的概念,现在来直接上实现代码:

/*
时间:2017/8/24
功能:二叉树
*/ package main import (
"fmt"
"sync"
) //二叉树节点结构
type Node struct {
data int
left *Node
right *Node
} //二叉查找树结构
type BST struct {
root *Node
lock sync.RWMutex
} //插入方法(判断位置 中序遍历)
func insertNode(node *Node, addNode *Node) {
if addNode.data < node.data {
if node.left == nil {
node.left = addNode
} else {
insertNode(node.left, addNode)
}
} else {
if node.right == nil {
node.right = addNode
} else {
insertNode(node.right, addNode)
}
}
} //插入操作
func (t *BST) Insert(data int) {
t.lock.Lock()
defer t.lock.Unlock()
node := &Node{
data: data,
left: nil,
right: nil,
}
if t.root == nil {
t.root = node
} else {
insertNode(t.root, node)
}
} //先序遍历
func PreOrderTraverse(bst *Node) {
if bst != nil {
fmt.Printf("%d ", bst.data)
PreOrderTraverse(bst.left)
PreOrderTraverse(bst.right)
}
} //中序遍历
func InOrderTraverse(bst *Node) {
if bst != nil {
InOrderTraverse(bst.left)
fmt.Printf("%d ", bst.data)
InOrderTraverse(bst.right)
}
} //后序遍历
func PostOrderTraverse(bst *Node) {
if bst != nil {
PostOrderTraverse(bst.left)
PostOrderTraverse(bst.right)
fmt.Printf("%d ", bst.data)
}
} //查找
func SearchBST(node *Node, key int) bool {
if node == nil {
return false
}
if key == node.data {
return true
}
if key < node.data {
return SearchBST(node.left, key)
} else {
return SearchBST(node.right, key)
}
} //删除执行函数
func remove(node *Node, key int) *Node {
if node == nil {
return nil
}
if key == node.data {
if node.left == nil && node.right == nil {
node = nil
return nil
}
if node.left == nil {
node = node.right
return node
}
if node.right == nil {
node = node.left
return node
}
rightside := node.right
for {
if rightside != nil && rightside.left != nil {
rightside = rightside.left
} else {
break
}
}
node.data = rightside.data
node.right = remove(node.right, node.data)
return node
}
if key < node.data {
node.left = remove(node.left, key)
return node
} else {
node.right = remove(node.right, key)
return node
}
} //删除操作
func (t *BST) Remove(key int) {
t.lock.Lock()
defer t.lock.Unlock()
remove(t.root, key)
} func main() {
var t BST
t.Insert(2)
t.Insert(6)
t.Insert(5)
t.Insert(1)
t.Insert(10)
t.Insert(8) fmt.Println("PREORDER...")
PreOrderTraverse(t.root)
fmt.Println("\nINORDER...")
InOrderTraverse(t.root)
fmt.Println("\nPOSTORDER...")
PostOrderTraverse(t.root)
fmt.Printf("\n")
fmt.Println("Search...")
fmt.Println(SearchBST(t.root, 6))
fmt.Println("Remove...")
t.Remove(6)
fmt.Println("PREORDER...")
PreOrderTraverse(t.root)
fmt.Println("\nINORDER...")
InOrderTraverse(t.root)
fmt.Println("\nPOSTORDER...")
PostOrderTraverse(t.root)
fmt.Printf("\n")
fmt.Println("Search...")
fmt.Println(SearchBST(t.root, 6))
}

执行结果

PREORDER...
2 1 6 5 10 8
INORDER...
1 2 5 6 8 10
POSTORDER...
1 5 8 10 6 2
Search...
true
Remove...
PREORDER...
2 1 8 5 10
INORDER...
1 2 5 8 10
POSTORDER...
1 5 10 8 2
Search...
false

总结

照例得总结一波,其实每什么好总结的,大家都熟悉的数据结构。在增删查的复杂度比较均衡。拿来练手非常不错。

Go 数据结构--二分查找树的更多相关文章

  1. lintcode-106-排序列表转换为二分查找树

    106-排序列表转换为二分查找树 给出一个所有元素以升序排序的单链表,将它转换成一棵高度平衡的二分查找树 样例 标签 递归 链表 思路 类似于二分查找,每次将链表二分,中间节点作为根节点,在建立左子树 ...

  2. 笔试算法题(58):二分查找树性能分析(Binary Search Tree Performance Analysis)

    议题:二分查找树性能分析(Binary Search Tree Performance Analysis) 分析: 二叉搜索树(Binary Search Tree,BST)是一颗典型的二叉树,同时任 ...

  3. 手把手教你用java实现二分查找树及其相关操作

    二分查找树(Binary Search Tree)的基本操作有搜索.求最大值.求最小值.求前继.求后继.插入及删除. 对二分查找树的进行基本操作所花费的时间与树的高度成比例.例如有n个节点的完全二叉树 ...

  4. 数据结构---平衡查找树之B树和B+树(转)

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...

  5. SPOJ TEMPLEQ - Temple Queues(二分查找+树状数组)

    题意: 有N个队伍(1 <= N <= 100,000),每个队伍开始有ai个人[0 <= ai<= 100,000,000],有Q个操作[0<=Q<= 500,0 ...

  6. python数据结构之树(二分查找树)

    本篇学习笔记记录二叉查找树的定义以及用python实现数据结构增.删.查的操作. 二叉查找树(Binary Search Tree) 简称BST,又叫二叉排序树(Binary Sort Tree),是 ...

  7. Holedox Eating HDU - 4302 2012多校C 二分查找+树状数组/线段树优化

    题意 一个长度$n<=1e5$的数轴,$m<=1e5$个操作 有两种一些操作 $0$  $x$ 在$x$放一个食物 $1$ 一个虫子去吃最近的食物,如果有两个食物一样近,不转变方向的去吃 ...

  8. 二分查找树按照key值划分

    #include <iostream>#include <vector>#include <algorithm>#include <string>#in ...

  9. js二分查找树实现

    function BinaryTree() { var Node = function(key) { this.key = key; this.left = null; this.right = nu ...

随机推荐

  1. PHP ORM笔记

    1.ORM是什么? 经常听到程序员的面试中会问到对ORM的了解,但是一直不知道ORM是个什么鬼东西,知道有一天在百度上顺带看到才发现ORM就是我们平时在框架中一直使用的数据库对象操作.ORM(Obje ...

  2. docker~windows版本的安装与使用

    回到目录 在面向服务的框架里,docker扮演着十分重要的角色,他使你的部署更轻量,使运维更智能化,事实上微软自己的项目也已经用上了docker了,下面介绍一下在windows环境上使用docker的 ...

  3. FreeRTOS——任务管理

    1. FreeRTOS 任务不允许以任何方式从实现函数中返回——他们绝不能有一条“return”语句,也不可能执行到函数的末尾.如果一个函数不需要,可以将其删除,如在任务中使用函数vTaskDelet ...

  4. webgl开发第一道坎——矩阵与坐标变换

    一.齐次坐标 在3D世界中表示一个点的方式是:(x, y, z);然而在3D世界中表示一个向量的方式也是:(x, y, z);如果我们只给一个三元组(x, y, z)鬼知道这是向量还是点,毕竟点与向量 ...

  5. 基于Spring4的定时任务管理

    在项目中,有时会遇到定时任务的处理,下面介绍一下我的做法. 此做法基于Spring4,Spring框架搭建成功,另需引入quartz.jar,pom.xml文件中加入 <dependency&g ...

  6. (转)搬瓦工(bandwagonhost)后台管理VPS

    1. Bandwagonghost使用建议 购买了搬瓦工(bandwagonhost)的VPS,如何使用呢? 首先插几句使用建议,老高认为十分重要,为什么呢?搬瓦工如果监控到有大量的垃圾信息从我们的主 ...

  7. Objectiv-c - UICollectionViewLayout自定义布局-瀑布流

    最近刚写的一个简单的瀑布流. 整体思路可能不是很完善. 不过也算是实现效果了. 高手勿喷 思路: 自定义UICollectionViewLayout实际上就是需要返回每个item的fram就可以了. ...

  8. 【Django】url传递参数

    1.  url传递参数的特殊字符 在压缩后,可能出现  +  -  = 空格  这类特殊字符,需要在传递前进行url编码  urllib.enquote(string) 获取参数后 urllib.un ...

  9. tcpdump使用方法小结

    在进行网络测试的时候,我们经常需要进行抓包的工作,当然有许多测试工具可以使用,比如sniffer, ethreal等.但最为方便和简单得就非TCPDump莫属. Linux的发行版里基本都包括了这个工 ...

  10. Excel 一键上传到数据库

    <a class="edit"  id="batchImport">   批量导入  </a> js代码弹窗: $("#bat ...