Lesser known purrr tricks
purrr
is package that extends R’s functional programming capabilities. It brings a lot of new stuff to the table and in this post I show you some of the most useful (at least to me) functions included in purrr
.
Getting rid of loops with map()
library(purrr)
numbers <- list(11, 12, 13, 14)
map_dbl(numbers, sqrt)
## [1] 3.316625 3.464102 3.605551 3.741657
You might wonder why this might be preferred to a for loop? It’s a lot less verbose, and you do not need to initialise any kind of structure to hold the result. If you google “create empty list in R” you will see that this is very common. However, with themap()
family of functions, there is no need for an initial structure. map_dbl()
returns an atomic list of real numbers, but if you use map()
you will get a list back. Try them all out!
Map conditionally
map_if()
# Create a helper function that returns TRUE if a number is even
is_even <- function(x){
!as.logical(x %% 2)
}
map_if(numbers, is_even, sqrt)
## [[1]]
## [1] 11
##
## [[2]]
## [1] 3.464102
##
## [[3]]
## [1] 13
##
## [[4]]
## [1] 3.741657
map_at()
map_at(numbers, c(1,3), sqrt)
## [[1]]
## [1] 3.316625
##
## [[2]]
## [1] 12
##
## [[3]]
## [1] 3.605551
##
## [[4]]
## [1] 14
map_if()
and map_at()
have a further argument than map()
; in the case of map_if()
, a predicate function ( a function that returnsTRUE
or FALSE
) and a vector of positions for map_at()
. This allows you to map your function only when certain conditions are met, which is also something that a lot of people google for.
Map a function with multiple arguments
numbers2 <- list(1, 2, 3, 4)
map2(numbers, numbers2, `+`)
## [[1]]
## [1] 12
##
## [[2]]
## [1] 14
##
## [[3]]
## [1] 16
##
## [[4]]
## [1] 18
You can map two lists to a function which takes two arguments using map_2()
. You can even map an arbitrary number of lists to any function using pmap()
.
By the way, try this in: `+`(1,3)
and see what happens.
Don’t stop execution of your function if something goes wrong
possible_sqrt <- possibly(sqrt, otherwise = NA_real_)
numbers_with_error <- list(1, 2, 3, "spam", 4)
map(numbers_with_error, possible_sqrt)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 1.414214
##
## [[3]]
## [1] 1.732051
##
## [[4]]
## [1] NA
##
## [[5]]
## [1] 2
Another very common issue is to keep running your loop even when something goes wrong. In most cases the loop simply stops at the error, but you would like it to continue and see where it failed. Try to google “skip error in a loop” or some variation of it and you’ll see that a lot of people really just want that. This is possible by combining map()
and possibly()
. Most solutions involve the use of tryCatch()
which I personally do not find very easy to use.
Don’t stop execution of your function if something goes wrong and capture the error
safe_sqrt <- safely(sqrt, otherwise = NA_real_)
map(numbers_with_error, safe_sqrt)
## [[1]]
## [[1]]$result
## [1] 1
##
## [[1]]$error
## NULL
##
##
## [[2]]
## [[2]]$result
## [1] 1.414214
##
## [[2]]$error
## NULL
##
##
## [[3]]
## [[3]]$result
## [1] 1.732051
##
## [[3]]$error
## NULL
##
##
## [[4]]
## [[4]]$result
## [1] NA
##
## [[4]]$error
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
##
## [[5]]
## [[5]]$result
## [1] 2
##
## [[5]]$error
## NULL
safely()
is very similar to possibly()
but it returns a list of lists. An element is thus a list of the result and the accompagnying error message. If there is no error, the error component is NULL
if there is an error, it returns the error message.
Transpose a list
safe_result_list <- map(numbers_with_error, safe_sqrt)
transpose(safe_result_list)
## $result
## $result[[1]]
## [1] 1
##
## $result[[2]]
## [1] 1.414214
##
## $result[[3]]
## [1] 1.732051
##
## $result[[4]]
## [1] NA
##
## $result[[5]]
## [1] 2
##
##
## $error
## $error[[1]]
## NULL
##
## $error[[2]]
## NULL
##
## $error[[3]]
## NULL
##
## $error[[4]]
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
## $error[[5]]
## NULL
Here we transposed the above list. This means that we still have a list of lists, but where the first list holds all the results (which you can then access with safe_result_list$result
) and the second list holds all the errors (which you can access withsafe_result_list$error
). This can be quite useful!
Apply a function to a lower depth of a list
transposed_list <- transpose(safe_result_list)
transposed_list %>%
at_depth(2, is_null)
## $result
## $result[[1]]
## [1] FALSE
##
## $result[[2]]
## [1] FALSE
##
## $result[[3]]
## [1] FALSE
##
## $result[[4]]
## [1] FALSE
##
## $result[[5]]
## [1] FALSE
##
##
## $error
## $error[[1]]
## [1] TRUE
##
## $error[[2]]
## [1] TRUE
##
## $error[[3]]
## [1] TRUE
##
## $error[[4]]
## [1] FALSE
##
## $error[[5]]
## [1] TRUE
Sometimes working with lists of lists can be tricky, especially when we want to apply a function to the sub-lists. This is easily done with at_depth()
!
Set names of list elements
name_element <- c("sqrt()", "ok?")
set_names(transposed_list, name_element)
## $`sqrt()`
## $`sqrt()`[[1]]
## [1] 1
##
## $`sqrt()`[[2]]
## [1] 1.414214
##
## $`sqrt()`[[3]]
## [1] 1.732051
##
## $`sqrt()`[[4]]
## [1] NA
##
## $`sqrt()`[[5]]
## [1] 2
##
##
## $`ok?`
## $`ok?`[[1]]
## NULL
##
## $`ok?`[[2]]
## NULL
##
## $`ok?`[[3]]
## NULL
##
## $`ok?`[[4]]
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
## $`ok?`[[5]]
## NULL
Reduce a list to a single value
reduce(numbers, `*`)
## [1] 24024
reduce()
applies the function *
iteratively to the list of numbers. There’s also accumulate()
:
accumulate(numbers, `*`)
## [1] 11 132 1716 24024
which keeps the intermediary results.
This function is very general, and you can reduce anything:
Matrices:
mat1 <- matrix(rnorm(10), nrow = 2)
mat2 <- matrix(rnorm(10), nrow = 2)
mat3 <- matrix(rnorm(10), nrow = 2)
list_mat <- list(mat1, mat2, mat3)
reduce(list_mat, `+`)
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.5228188 0.4813357 0.3808749 -1.1678164 0.3080001
## [2,] -3.8330509 -0.1061853 -3.8315768 0.3052248 0.3486929
even data frames:
df1 <- as.data.frame(mat1)
df2 <- as.data.frame(mat2)
df3 <- as.data.frame(mat3)
list_df <- list(df1, df2, df3)
reduce(list_df, dplyr::full_join)
## Joining, by = c("V1", "V2", "V3", "V4", "V5")
## Joining, by = c("V1", "V2", "V3", "V4", "V5")
## V1 V2 V3 V4 V5
## 1 0.01587062 0.8570925 1.04330594 -0.5354500 0.7557203
## 2 -0.46872345 0.3742191 -1.88322431 1.4983888 -1.2691007
## 3 -0.60675851 -0.7402364 -0.49269182 -0.4884616 -1.0127531
## 4 -1.49619518 1.0714251 0.06748534 0.6650679 1.1709317
## 5 0.06806907 0.3644795 -0.16973919 -0.1439047 0.5650329
## 6 -1.86813223 -1.5518295 -2.01583786 -1.8582319 0.4468619
Hope you enjoyed this list of useful functions! If you enjoy the content of my blog, you can follow me on twitter.
转自:https://www.r-bloggers.com/lesser-known-purrr-tricks/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+RBloggers+%28R+bloggers%29
Lesser known purrr tricks的更多相关文章
- Lesser known dplyr tricks
In this blog post I share some lesser-known (at least I believe they are) tricks that use mainly fun ...
- testng 教程之使用参数的一些tricks配合使用reportng
前两次的总结:testng annotation生命周期 http://www.cnblogs.com/tobecrazy/p/4579414.html testng.xml的使用和基本配置http: ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- Matlab tips and tricks
matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...
- LoadRunner AJAX TruClient协议Tips and Tricks
LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...
- 【翻译】C# Tips & Tricks: Weak References - When and How to Use Them
原文:C# Tips & Tricks: Weak References - When and How to Use Them Sometimes you have an object whi ...
- 神经网络训练中的Tricks之高效BP(反向传播算法)
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
- Hex-Rays Decompiler Tips and tricks Volatile memory
https://www.hex-rays.com/products/decompiler/manual/tricks.shtml First of all, read the troubleshoot ...
- hdu 5276 YJC tricks time 数学
YJC tricks time Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...
随机推荐
- mui 页面间传值得2种方式
通过最近得工作开发刚接触mui框架,用到了页面间得传值, 第一种:通过url进行传值 父页面代码: mui.openWindow({ id:'子页面.html', url:'子页面.html?para ...
- android-studio-bundle-141.2178183首次执行Hello World的时候出现ADB not responding. If you'd like to retry, then please manually kill "adb.e的错误
这是由于有其他程序在占用adb.exe要使用的端口5037,打开命令提示符cmd,输入指令netstat -aon|findstr 5037查看在使用此端口的程序,如 8036即为占用该端口号的PID ...
- java复习(2)---java基础杂记
java命名规范: 参考:http://www.cnblogs.com/maowang1991/archive/2013/06/29/3162366.html 1.项目名小写 2.包名小写 3.类名每 ...
- JavaScript高级程序设计---学习笔记(五)
1.2D上下文 1)填充与描边 填充和描边的两个操作取决于两个属性:fillStyle和strokeStyle.两个属性的值可以是字符串.渐变对象或模式对象,默认值都是#000000 例: html: ...
- D3D Learning_01_CreateWindow
// Learn_01_CreateWindow.cpp : Defines the entry point for the application. // #include "stdafx ...
- R语言与SQL server链接
第一步:创建数据源(方法见下面链接) http://www.2cto.com/database/201412/365396.html 第二步:在R中输入以下代码: #####SQL SERVER与R语 ...
- idea+springmvc+spring+mybatis+maven整合返回json数据webapi
首先看一张目录结构图: : 创建步骤: 1.创建maven webapp工程, 创建完后的目录结构为: 2.添加项目依赖(添加jar包) 需要的jar包: spring-webmvc, spring ...
- 如何使用HTML5自定义数据属性
在本文中,我将向你介绍如何使用HTML5自定义数据属性.我还将向你介绍一些开发人员在工作中经常使用的优秀实例. 为什么需要自定义数据属性? 很多时候我们需要存储一些与不同DOM元素相关联的信息.这些信 ...
- Java中遍历Map的常用方法
以下方法适用于任何map实现(HashMap, TreeMap, LinkedHashMap, Hashtable, 等等): 方式一(推荐): // 推荐 // 在for-each循环中使用entr ...
- [ext4]07 磁盘布局 - 块/inode分配策略
Ext4系统从设计上就认为数据局部性是文件系统的文件系统的一个理想品质. 在机械硬盘上,相关联的数据存放在相近的blocks上,可以使得在访问数据时减少磁头驱动器的移动距离,从而加快IO访问. 在SS ...