Lesser known purrr tricks
purrr
is package that extends R’s functional programming capabilities. It brings a lot of new stuff to the table and in this post I show you some of the most useful (at least to me) functions included in purrr
.
Getting rid of loops with map()
library(purrr)
numbers <- list(11, 12, 13, 14)
map_dbl(numbers, sqrt)
## [1] 3.316625 3.464102 3.605551 3.741657
You might wonder why this might be preferred to a for loop? It’s a lot less verbose, and you do not need to initialise any kind of structure to hold the result. If you google “create empty list in R” you will see that this is very common. However, with themap()
family of functions, there is no need for an initial structure. map_dbl()
returns an atomic list of real numbers, but if you use map()
you will get a list back. Try them all out!
Map conditionally
map_if()
# Create a helper function that returns TRUE if a number is even
is_even <- function(x){
!as.logical(x %% 2)
}
map_if(numbers, is_even, sqrt)
## [[1]]
## [1] 11
##
## [[2]]
## [1] 3.464102
##
## [[3]]
## [1] 13
##
## [[4]]
## [1] 3.741657
map_at()
map_at(numbers, c(1,3), sqrt)
## [[1]]
## [1] 3.316625
##
## [[2]]
## [1] 12
##
## [[3]]
## [1] 3.605551
##
## [[4]]
## [1] 14
map_if()
and map_at()
have a further argument than map()
; in the case of map_if()
, a predicate function ( a function that returnsTRUE
or FALSE
) and a vector of positions for map_at()
. This allows you to map your function only when certain conditions are met, which is also something that a lot of people google for.
Map a function with multiple arguments
numbers2 <- list(1, 2, 3, 4)
map2(numbers, numbers2, `+`)
## [[1]]
## [1] 12
##
## [[2]]
## [1] 14
##
## [[3]]
## [1] 16
##
## [[4]]
## [1] 18
You can map two lists to a function which takes two arguments using map_2()
. You can even map an arbitrary number of lists to any function using pmap()
.
By the way, try this in: `+`(1,3)
and see what happens.
Don’t stop execution of your function if something goes wrong
possible_sqrt <- possibly(sqrt, otherwise = NA_real_)
numbers_with_error <- list(1, 2, 3, "spam", 4)
map(numbers_with_error, possible_sqrt)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 1.414214
##
## [[3]]
## [1] 1.732051
##
## [[4]]
## [1] NA
##
## [[5]]
## [1] 2
Another very common issue is to keep running your loop even when something goes wrong. In most cases the loop simply stops at the error, but you would like it to continue and see where it failed. Try to google “skip error in a loop” or some variation of it and you’ll see that a lot of people really just want that. This is possible by combining map()
and possibly()
. Most solutions involve the use of tryCatch()
which I personally do not find very easy to use.
Don’t stop execution of your function if something goes wrong and capture the error
safe_sqrt <- safely(sqrt, otherwise = NA_real_)
map(numbers_with_error, safe_sqrt)
## [[1]]
## [[1]]$result
## [1] 1
##
## [[1]]$error
## NULL
##
##
## [[2]]
## [[2]]$result
## [1] 1.414214
##
## [[2]]$error
## NULL
##
##
## [[3]]
## [[3]]$result
## [1] 1.732051
##
## [[3]]$error
## NULL
##
##
## [[4]]
## [[4]]$result
## [1] NA
##
## [[4]]$error
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
##
## [[5]]
## [[5]]$result
## [1] 2
##
## [[5]]$error
## NULL
safely()
is very similar to possibly()
but it returns a list of lists. An element is thus a list of the result and the accompagnying error message. If there is no error, the error component is NULL
if there is an error, it returns the error message.
Transpose a list
safe_result_list <- map(numbers_with_error, safe_sqrt)
transpose(safe_result_list)
## $result
## $result[[1]]
## [1] 1
##
## $result[[2]]
## [1] 1.414214
##
## $result[[3]]
## [1] 1.732051
##
## $result[[4]]
## [1] NA
##
## $result[[5]]
## [1] 2
##
##
## $error
## $error[[1]]
## NULL
##
## $error[[2]]
## NULL
##
## $error[[3]]
## NULL
##
## $error[[4]]
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
## $error[[5]]
## NULL
Here we transposed the above list. This means that we still have a list of lists, but where the first list holds all the results (which you can then access with safe_result_list$result
) and the second list holds all the errors (which you can access withsafe_result_list$error
). This can be quite useful!
Apply a function to a lower depth of a list
transposed_list <- transpose(safe_result_list)
transposed_list %>%
at_depth(2, is_null)
## $result
## $result[[1]]
## [1] FALSE
##
## $result[[2]]
## [1] FALSE
##
## $result[[3]]
## [1] FALSE
##
## $result[[4]]
## [1] FALSE
##
## $result[[5]]
## [1] FALSE
##
##
## $error
## $error[[1]]
## [1] TRUE
##
## $error[[2]]
## [1] TRUE
##
## $error[[3]]
## [1] TRUE
##
## $error[[4]]
## [1] FALSE
##
## $error[[5]]
## [1] TRUE
Sometimes working with lists of lists can be tricky, especially when we want to apply a function to the sub-lists. This is easily done with at_depth()
!
Set names of list elements
name_element <- c("sqrt()", "ok?")
set_names(transposed_list, name_element)
## $`sqrt()`
## $`sqrt()`[[1]]
## [1] 1
##
## $`sqrt()`[[2]]
## [1] 1.414214
##
## $`sqrt()`[[3]]
## [1] 1.732051
##
## $`sqrt()`[[4]]
## [1] NA
##
## $`sqrt()`[[5]]
## [1] 2
##
##
## $`ok?`
## $`ok?`[[1]]
## NULL
##
## $`ok?`[[2]]
## NULL
##
## $`ok?`[[3]]
## NULL
##
## $`ok?`[[4]]
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
## $`ok?`[[5]]
## NULL
Reduce a list to a single value
reduce(numbers, `*`)
## [1] 24024
reduce()
applies the function *
iteratively to the list of numbers. There’s also accumulate()
:
accumulate(numbers, `*`)
## [1] 11 132 1716 24024
which keeps the intermediary results.
This function is very general, and you can reduce anything:
Matrices:
mat1 <- matrix(rnorm(10), nrow = 2)
mat2 <- matrix(rnorm(10), nrow = 2)
mat3 <- matrix(rnorm(10), nrow = 2)
list_mat <- list(mat1, mat2, mat3)
reduce(list_mat, `+`)
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.5228188 0.4813357 0.3808749 -1.1678164 0.3080001
## [2,] -3.8330509 -0.1061853 -3.8315768 0.3052248 0.3486929
even data frames:
df1 <- as.data.frame(mat1)
df2 <- as.data.frame(mat2)
df3 <- as.data.frame(mat3)
list_df <- list(df1, df2, df3)
reduce(list_df, dplyr::full_join)
## Joining, by = c("V1", "V2", "V3", "V4", "V5")
## Joining, by = c("V1", "V2", "V3", "V4", "V5")
## V1 V2 V3 V4 V5
## 1 0.01587062 0.8570925 1.04330594 -0.5354500 0.7557203
## 2 -0.46872345 0.3742191 -1.88322431 1.4983888 -1.2691007
## 3 -0.60675851 -0.7402364 -0.49269182 -0.4884616 -1.0127531
## 4 -1.49619518 1.0714251 0.06748534 0.6650679 1.1709317
## 5 0.06806907 0.3644795 -0.16973919 -0.1439047 0.5650329
## 6 -1.86813223 -1.5518295 -2.01583786 -1.8582319 0.4468619
Hope you enjoyed this list of useful functions! If you enjoy the content of my blog, you can follow me on twitter.
转自:https://www.r-bloggers.com/lesser-known-purrr-tricks/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+RBloggers+%28R+bloggers%29
Lesser known purrr tricks的更多相关文章
- Lesser known dplyr tricks
In this blog post I share some lesser-known (at least I believe they are) tricks that use mainly fun ...
- testng 教程之使用参数的一些tricks配合使用reportng
前两次的总结:testng annotation生命周期 http://www.cnblogs.com/tobecrazy/p/4579414.html testng.xml的使用和基本配置http: ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- Matlab tips and tricks
matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...
- LoadRunner AJAX TruClient协议Tips and Tricks
LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...
- 【翻译】C# Tips & Tricks: Weak References - When and How to Use Them
原文:C# Tips & Tricks: Weak References - When and How to Use Them Sometimes you have an object whi ...
- 神经网络训练中的Tricks之高效BP(反向传播算法)
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
- Hex-Rays Decompiler Tips and tricks Volatile memory
https://www.hex-rays.com/products/decompiler/manual/tricks.shtml First of all, read the troubleshoot ...
- hdu 5276 YJC tricks time 数学
YJC tricks time Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...
随机推荐
- POJ3592 Instantaneous Transference题解
题意: 给一个矩形,矩形中某些点有一定数量的矿石,有些点为传送点,有些点为障碍.你驾驶采矿车(ore-miner truck,我也不知道是什么),从左上角出发,采尽量多的矿石,矿石不可再生.不能往左边 ...
- 修改Gradle 和Maven本地仓库的位置 方法
关于Maven的配置: 用过Maven的兄弟应该知道Maven可以通过配置 conf文件夹下面的settings.xml文件来修改maven下载的包,默认是下在c盘的用户文件夹下的.m2中,日积月累. ...
- 跟着刚哥梳理java知识点——泛型(十三)
一. 泛型概念的提出(为什么需要泛型)? 首先,我们看下下面这段简短的代码: public class GenericTest { public static void main(String[] a ...
- 【Java并发】详解 AbstractQueuedSynchronizer
前言 队列同步器 AbstractQueuedSynchronizer(以下简称 AQS),是用来构建锁或者其他同步组件的基础框架.它使用一个 int 成员变量来表示同步状态,通过 CAS 操作对同步 ...
- 【HDOJ 1086】 模板水过
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- JS - A*寻路
算法核心 A*估值算法 寻路估值算法有非常多:常用的有广度优先算法,深度优先算法,哈夫曼树等等,游戏中用的比较多的如:A*估值 算法描述 对起点与终点进行横纵坐标的运算 代码实现 start: 起点坐 ...
- Spring Boot启动过程(七):Connector初始化
Connector实例的创建已经在Spring Boot启动过程(四):Spring Boot内嵌Tomcat启动中提到了: Connector是LifecycleMBeanBase的子类,先是设置L ...
- 【从无到有】教你使用animation做简单的动画效果
今天写写怎么用animation属性做一些简单的动画效果 在CSS选择器中,使用animition动画属性,调用声明好的关键帧 首先声明一个动画(关键帧): @keyframes name{ from ...
- oracle 的 SDO_GEOMETRY
元数据定义 CREATE OR REPLACE TYPE MDSYS.SDO_GEOMETRY AS OBJECT ( SDO_GTYPE NUMBER, SDO_SRID NUMBER, SDO_P ...
- C++ STL学习之容器set和multiset (补充材料)
一.set和multiset基础 set和multiset会根据特定的排序准则,自动将元素进行排序.不同的是后者允许元素重复而前者不允许. 需要包含头文件: #include <set> ...