安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。 SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要,(但会有1x10 ^ 48分之一的机率出现相同的消息摘要,一般使用时忽略)。

  (注:最后有案例代码)

术语和概念

 位,字节和字

  SHA1始终把消息当成一个位(bit)字符串来处理。本文中,一个字(Word)是32位,而一个字节(Byte)是8位。比如,字符串“abc”可以被转换成一个位字符串:01100001 01100010 01100011。它也可以被表示成16进制字符串: 0x616263.

 运算符和符号

  下面的逻辑运算符都被运用于“字”(Word)
    X & Y = X, Y逻辑与
    X | Y = X, Y逻辑或
    X ^ Y= X, Y逻辑异或
    ~X = X逻辑取反
  X+Y定义如下:
    字 X 和 Y 代表两个整数 x 和y, 其中 0 <= x < 2^32 且 0 <= y < 2^32. 令整数z = (x + y) mod 2^32. 这时候 0 <= z < 2^32. 将z转换成字Z, 那么就是 Z = X + Y.
    逻辑左移位(循环移位)操作符Sn(X):
    X是一个字,n是一个整数,0<=n<=32。
    Sn(X) = (X<<n)OR(X>>32-n)

SHA1算法描述

  在SHA1算法中,我们必须把原始消息(字符串,文件等)转换成位字符串。SHA1算法只接受位作为输入。假设我们对字符串“abc”产生消息摘要。首先,我们将它转换成位字符串如下:
  01100001 01100010 01100011
  ―――――――――――――
  ‘a’=97 ‘b’=98 ‘c’=99
  这个位字符串的长度为24。下面我们需要5个步骤来计算消息摘要MAC。

 补位

  消息必须进行补位,以使其长度在对512取模以后的余数是448。也就是说,(补位后的消息长度)%512 = 448。即使长度已经满足对512取模后余数是448,补位也必须要进行。
  补位是这样进行的:先补一个1,然后再补0,直到长度满足对512取模后余数是448。总而言之,补位是至少补一位,最多补512位。还是以前面的“abc”为例显示补位的过程。
  原始信息: 01100001 01100010 01100011
  补位第一步:01100001 01100010 01100011 1
  首先补一个“1”
  补位第二步:01100001 01100010 01100011 10…..0
  然后补423个“0”
  我们可以把最后补位完成后的数据用16进制写成下面的样子
    61626380 00000000 00000000 00000000
    00000000 00000000 00000000 00000000
    00000000 00000000 00000000 00000000
    00000000 00000000
  经过以上的处理之后,数据的长度是448了,我们可以进行下一步操作。

 补长度

  所谓的补长度是将原始数据的长度补到已经进行了补位操作的消息后面。通常用一个64位的数据来表示原始消息的长度。如果消息长度不大于2^64,那么第一个字就是0。在进行了补长度的操作以后,整个消息就变成下面这样了(16进制格式)
    61626380 00000000 00000000 00000000
    00000000 00000000 00000000 00000000
    00000000 00000000 00000000 00000000
    00000000 00000000 00000000 00000018
  如果原始的消息长度超过了512,我们需要将它补成512的倍数。然后我们把整个消息分成一个一个512位的数据块,分别处理每一个数据块,从而得到消息摘要

 使用的常量

  一系列的常量字K(0), K(1), ... , K(79),如果以16进制给出。它们如下:
    Kt = 0x5A827999 (0 <= t <= 19)
    Kt = 0x6ED9EBA1 (20 <= t <= 39)
    Kt = 0x8F1BBCDC (40 <= t <= 59)
    Kt = 0xCA62C1D6 (60 <= t <= 79).

 使用的函数

  在SHA1中我们需要一系列的函数。每个函数ft (0 <= t <= 79)都操作32位字B,C,D并且产生32位字作为输出。ft(B,C,D)可以如下定义:
    ft(B,C,D) = (B AND C) or ((NOT B) AND D) ( 0 <= t <= 19)
    ft(B,C,D) = B XOR C XOR D (20 <= t <= 39)
    ft(B,C,D) = (B AND C) or (B AND D) or (C AND D) (40 <= t <= 59)
    ft(B,C,D) = B XOR C XOR D (60 <= t <= 79).

 计算消息摘要

  必须使用进行了补位和补长度后的消息来计算消息摘要。计算需要两个缓冲区,每个都由5个32位的字组成,还需要一个80个32位字的缓冲区。第一个5个字的缓冲区被标识为A,B,C,D,E。第二个5个字的缓冲区被标识为H0, H1, H2, H3, H4。80个字的缓冲区被标识为W0, W1,..., W79,另外还需要一个一个字的TEMP缓冲区。
  为了产生消息摘要,在第3.2部分中定义的512位(16个字)的数据块M1, M2,..., Mn会依次进行处理,处理每个数据块Mi 包含80个步骤。
  在处理所有数据块之前,缓冲区{Hi} 被初始化为下面的值(16进制)
    H0 = 0x67452301
    H1 = 0xEFCDAB89
    H2 = 0x98BADCFE
    H3 = 0x10325476
    H4 = 0xC3D2E1F0.
  现在开始处理M1, M2, ... , Mn。为了处理 Mi,需要进行下面的步骤
    (1). 将 Mi 分成 16 个字 W0, W1, ... , W15, W0 是最左边的字
    (2). 对于 t = 16 到 79 令
      W[t] = S1(W[t-3] XOR W[t-8] XOR W[t-14] XOR W[t-16]).
    (3). 令 A = H0, B = H1, C = H2, D = H3, E = H4.
    (4) 对于 t = 0 到 79,执行下面的循环
      TEMP = S5(A) + ft(B,C,D) + E + Wt + Kt;
      E = D; D = C; C = S30(B); B = A; A = TEMP;
    (5). 令 H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E.
  在处理完所有的 Mn, 后,消息摘要是一个160位的字符串,以下面的顺序标识
    H0 H1 H2 H3 H4.
  对于SHA256,SHA384,SHA512。你也可以用相似的办法来计算消息摘要。对消息进行补位的算法完全是一样的。
  SHA1在许多安全协议中广为使用,包括TLS和SSL、PGP、SSH、S/MIME和IPsec,曾被视为是MD5(更早之前被广为使用的散列函数)的后继者。
 
  附录案例代码:
 public class SHA1 {
private final int[] abcde = { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 };
// 摘要数据存储数组
private int[] digestInt = new int[5];
// 计算过程中的临时数据存储数组
private int[] tmpData = new int[80]; // 计算sha-1摘要
private int process_input_bytes(byte[] bytedata) {
// 初试化常量
System.arraycopy(abcde, 0, digestInt, 0, abcde.length);
// 格式化输入字节数组,补10及长度数据
byte[] newbyte = byteArrayFormatData(bytedata);
// 获取数据摘要计算的数据单元个数
int MCount = newbyte.length / 64;
// 循环对每个数据单元进行摘要计算
for (int pos = 0; pos < MCount; pos++) {
// 将每个单元的数据转换成16个整型数据,并保存到tmpData的前16个数组元素中
for (int j = 0; j < 16; j++) {
tmpData[j] = byteArrayToInt(newbyte, (pos * 64) + (j * 4));
}
// 摘要计算函数
encrypt();
}
return 20;
} // 格式化输入字节数组格式
private byte[] byteArrayFormatData(byte[] bytedata) {
// 补0数量
int zeros = 0;
// 补位后总位数
int size = 0;
// 原始数据长度
int n = bytedata.length;
// 模64后的剩余位数
int m = n % 64;
// 计算添加0的个数以及添加10后的总长度
if (m < 56) {
zeros = 55 - m;
size = n - m + 64;
} else if (m == 56) {
zeros = 63;
size = n + 8 + 64;
} else {
zeros = 63 - m + 56;
size = (n + 64) - m + 64;
}
// 补位后生成的新数组内容
byte[] newbyte = new byte[size];
// 复制数组的前面部分
System.arraycopy(bytedata, 0, newbyte, 0, n);
// 获得数组Append数据元素的位置
int l = n;
// 补1操作
newbyte[l++] = (byte) 0x80;
// 补0操作
for (int i = 0; i < zeros; i++) {
newbyte[l++] = (byte) 0x00;
}
// 计算数据长度,补数据长度位共8字节,长整型
long N = (long) n * 8;
byte h8 = (byte) (N & 0xFF);
byte h7 = (byte) ((N >> 8) & 0xFF);
byte h6 = (byte) ((N >> 16) & 0xFF);
byte h5 = (byte) ((N >> 24) & 0xFF);
byte h4 = (byte) ((N >> 32) & 0xFF);
byte h3 = (byte) ((N >> 40) & 0xFF);
byte h2 = (byte) ((N >> 48) & 0xFF);
byte h1 = (byte) (N >> 56);
newbyte[l++] = h1;
newbyte[l++] = h2;
newbyte[l++] = h3;
newbyte[l++] = h4;
newbyte[l++] = h5;
newbyte[l++] = h6;
newbyte[l++] = h7;
newbyte[l++] = h8;
return newbyte;
} private int f1(int x, int y, int z) {
return (x & y) | (~x & z);
} private int f2(int x, int y, int z) {
return x ^ y ^ z;
} private int f3(int x, int y, int z) {
return (x & y) | (x & z) | (y & z);
} private int f4(int x, int y) {
return (x << y) | x >>> (32 - y);
} // 单元摘要计算函数
private void encrypt() {
for (int i = 16; i <= 79; i++) {
tmpData[i] = f4(tmpData[i - 3] ^ tmpData[i - 8] ^ tmpData[i - 14] ^ tmpData[i - 16], 1);
}
int[] tmpabcde = new int[5];
for (int i1 = 0; i1 < tmpabcde.length; i1++) {
tmpabcde[i1] = digestInt[i1];
}
for (int j = 0; j <= 19; j++) {
int tmp = f4(tmpabcde[0], 5) + f1(tmpabcde[1], tmpabcde[2], tmpabcde[3]) + tmpabcde[4] + tmpData[j]
+ 0x5a827999;
tmpabcde[4] = tmpabcde[3];
tmpabcde[3] = tmpabcde[2];
tmpabcde[2] = f4(tmpabcde[1], 30);
tmpabcde[1] = tmpabcde[0];
tmpabcde[0] = tmp;
}
for (int k = 20; k <= 39; k++) {
int tmp = f4(tmpabcde[0], 5) + f2(tmpabcde[1], tmpabcde[2], tmpabcde[3]) + tmpabcde[4] + tmpData[k]
+ 0x6ed9eba1;
tmpabcde[4] = tmpabcde[3];
tmpabcde[3] = tmpabcde[2];
tmpabcde[2] = f4(tmpabcde[1], 30);
tmpabcde[1] = tmpabcde[0];
tmpabcde[0] = tmp;
}
for (int l = 40; l <= 59; l++) {
int tmp = f4(tmpabcde[0], 5) + f3(tmpabcde[1], tmpabcde[2], tmpabcde[3]) + tmpabcde[4] + tmpData[l]
+ 0x8f1bbcdc;
tmpabcde[4] = tmpabcde[3];
tmpabcde[3] = tmpabcde[2];
tmpabcde[2] = f4(tmpabcde[1], 30);
tmpabcde[1] = tmpabcde[0];
tmpabcde[0] = tmp;
}
for (int m = 60; m <= 79; m++) {
int tmp = f4(tmpabcde[0], 5) + f2(tmpabcde[1], tmpabcde[2], tmpabcde[3]) + tmpabcde[4] + tmpData[m]
+ 0xca62c1d6;
tmpabcde[4] = tmpabcde[3];
tmpabcde[3] = tmpabcde[2];
tmpabcde[2] = f4(tmpabcde[1], 30);
tmpabcde[1] = tmpabcde[0];
tmpabcde[0] = tmp;
}
for (int i2 = 0; i2 < tmpabcde.length; i2++) {
digestInt[i2] = digestInt[i2] + tmpabcde[i2];
}
for (int n = 0; n < tmpData.length; n++) {
tmpData[n] = 0;
}
} // 4字节数组转换为整数
private int byteArrayToInt(byte[] bytedata, int i) {
return ((bytedata[i] & 0xff) << 24) | ((bytedata[i + 1] & 0xff) << 16) | ((bytedata[i + 2] & 0xff) << 8)
| (bytedata[i + 3] & 0xff);
} // 整数转换为4字节数组
private void intToByteArray(int intValue, byte[] byteData, int i) {
byteData[i] = (byte) (intValue >>> 24);
byteData[i + 1] = (byte) (intValue >>> 16);
byteData[i + 2] = (byte) (intValue >>> 8);
byteData[i + 3] = (byte) intValue;
} // 将字节转换为十六进制字符串
private static String byteToHexString(byte ib) {
char[] Digit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
char[] ob = new char[2];
ob[0] = Digit[(ib >>> 4) & 0X0F];
ob[1] = Digit[ib & 0X0F];
String s = new String(ob);
return s;
} // 将字节数组转换为十六进制字符串
private static String byteArrayToHexString(byte[] bytearray) {
String strDigest = "";
for (int i = 0; i < bytearray.length; i++) {
strDigest += byteToHexString(bytearray[i]);
}
return strDigest;
} // 计算sha-1摘要,返回相应的字节数组
public byte[] getDigestOfBytes(byte[] byteData) {
process_input_bytes(byteData);
byte[] digest = new byte[20];
for (int i = 0; i < digestInt.length; i++) {
intToByteArray(digestInt[i], digest, i * 4);
}
return digest;
} // 计算sha-1摘要,返回相应的十六进制字符串
public String getDigestOfString(byte[] byteData) {
return byteArrayToHexString(getDigestOfBytes(byteData));
} public static void main(String[] args) {
String data = "123456";
String digest = new SHA1().getDigestOfString(data.getBytes());
}
}

SHA1 安全哈希算法(Secure Hash Algorithm)的更多相关文章

  1. 一致性哈希算法(Consistent Hashing Algorithm)

    一致性哈希算法(Consistent Hashing Algorithm) 浅谈一致性Hash原理及应用   在讲一致性Hash之前我们先来讨论一个问题. 问题:现在有亿级用户,每日产生千万级订单,如 ...

  2. 感知哈希算法的java实现

    一.原理讲解      实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹 ...

  3. SHA-1(安全哈希算法实现)

    如题,不知道sha-1的自己百度吧. #include <iostream> #include <vector> //定义vector数组 #include <strin ...

  4. 一致性哈希算法以及其PHP实现

    在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括:  轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法(Respons ...

  5. Notes:一致性哈希算法

    业务场景: 存在三个专门提供缓存服务的服务器,前端所需要的图片等静态资源被缓存于这三个服务器其中之一. 但是如何提高查找图片的速度呢? 可以采用哈希算法. 常规意义上的哈希算法: 通过hash(图片名 ...

  6. 一致性哈希算法介绍,及java实现

    应用场景 在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法(Res ...

  7. 转:MD5(Message-Digest Algorithm 一种哈希算法)

    什么是MD5算法 MD5讯息摘要演算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码杂凑函数,可以产生出一个128位元(16位元组)的散列值(hash val ...

  8. [Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)

    局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论 ...

  9. openssl evp 哈希算法(md5,sha1,sha256)

    1. 简述 openssl提供了丰富密码学工具,一些常用的哈希算法 比如md5,sha 可以直接用提供的md5.h ,sha.h 接口使用: 为了方便开发者使用,openssl 又提供了一个EVP, ...

随机推荐

  1. asp.net中配置使用Sqlite轻型数据库

    Sqlite 管理工具 SQLiteDeveloper及破解 功能特点 表结构设计,数据维护,ddl生成,加密数据库支持,sqlite2,3支持 唯一缺憾,收费,有试用期 破解方法: 注册表删除 HK ...

  2. Telerik RadGridView动态增删行及行列操作

    最近使用一直使用第三方控件Telerik,版本 2011 Q1,一直使用显示控件RadGridView,使用起来比DataGird好使, 也发现有控件问题. 1.增行 RadGridView中使用Be ...

  3. Socket简单实现数据交互及上传

    声明:本文为原创,如需转载请说明出处:http://www.cnblogs.com/gudu1/p/7669175.html 首先为什么要写这个呢?因为在几个月之前我还使用Socket做一个小项目,而 ...

  4. python 中的enumerate()函数的用法

    enumerate函数说明: 函数语法:enumerate(可遍历的对象,索引号开始的值).enumerate(sequence, [start=0]) 功能:将可循环序列sequence以start ...

  5. linux下如何安装破解IntelliJ IDEA,及其基本使用教程;

    今天在linux下安装了IntelliJ idea,由于现在很多企业在linux平台下使用IntelliJ idea做java web的开发,所以对于IntelliJ idea的安装和学习是一件基本的 ...

  6. “华尔街之狼”:ICO是“史上最大骗局”

    勘探船进村的那个夏季,父亲从城里带回了那把手电.手电的金属外壳镀了镍,看上去和摸起来一样冰凉.父亲进城以前采了两筐枸杞子,他用它们换回了那把锃亮的东西.父亲一个人哼着<十八摸>上路,鲜红透 ...

  7. 关于keyTyped

    蠢了,重写keyTyped方法时候拿keyCode去做比较....记一下....VK_UNDEFiEND.......

  8. Zookeeper 笔记-watch

    ZooKeeper对Watch提供了什么保障 对于watch,ZooKeeper提供了这些保障: Watch与其他事件.其他watch以及异步回复都是有序的. ZooKeeper客户端库保证所有事件都 ...

  9. 基于itchat的微信群聊小助手基础开发(一)

    前段时间由于要管理微信群,基于itchat开发了一个简单的微信机器人 主要功能有: 图灵机器人功能 群聊昵称格式修改提示 消息防撤回功能 斗图功能 要开发一个基于itchat的最基本的聊天机器人,在g ...

  10. Ubuntu/deppin 系统安装Nginx

    Ubuntu/deppin 系统安装Nginx 添加密钥 打开Nginx官网 ,并找到如下位置: 在桌面新建"nginx_signing.key"文件,文件内容为请点击图1中的标注 ...