构造你自己的第一个神经网络

通过手势的图片识别图片比划的数字:
1) 现在用1080张64*64的图片作为训练集
2) 用120张图片作为测试集

 定义初始化值

def load_dataset():
train_dataset = h5py.File('datasets/train_signs.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels test_dataset = h5py.File('datasets/test_signs.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels classes = np.array(test_dataset["list_classes"][:]) # the list of classes train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

小测:

import matplotlib.pyplot as plt
index = 0
plt.imshow(X_train_orig[index])
print(Y_train_orig)
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

小测2:把矩阵降维为一维,并做分类映射

# Flatten the training and test images
X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
# Normalize image vectors
X_train = X_train_flatten/255.
X_test = X_test_flatten/255.
# Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6)
Y_test = convert_to_one_hot(Y_test_orig, 6) print ("number of training examples = " + str(X_train.shape[1]))
print ("number of test examples = " + str(X_test.shape[1]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape)) 结果:number of training examples = 1080
number of test examples = 120
X_train shape: (12288, 1080)
Y_train shape: (6, 1080)
X_test shape: (12288, 120)
Y_test shape: (6, 120)

线性回归模型:LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX.
Softmax 是判断哪个分类的概率最大

3.1 创建容器 存放变量
def create_placeholders(n_x,n_y):
X = tf.placeholder(tf.float32, shape=[n_x, None])
Y = tf.placeholder(tf.float32, shape=[n_y, None])
return X,Y

小测:

X, Y = create_placeholders(12288, 6)
print ("X = " + str(X))
print ("Y = " + str(Y))
3.2 初始化参数
在tensorflow里有get_variable初始化参数,通过Xavier进行设置变量的权重
W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())
def initialize_parameters():
tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 6 lines of code)
W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())
W2 = tf.get_variable("W2", [12,25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b2 = tf.get_variable("b2", [12,1], initializer = tf.zeros_initializer())
W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())
### END CODE HERE ### parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3} return parameters

3.3 向前传播 训练集训练

常用到的tensorflow函数:
tf.add(…,..)
tf.matmul(..,..) 矩阵阶乘
tf.nn.relu(..) Relu激活函数

def forward_propagation(X, parameters):
# Retrieve the parameters from the dictionary "parameters"
print(X.shape)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3'] ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents:
Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2
A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3
### END CODE HERE ### return Z3

小测:

        tf.reset_default_graph()
With tf.Session() as sess:
X,Y = create_placeholders(12888,6)
Parameters = initialize_parameters()
Z3 = forward_propagation(X,parameters)
Print(“Z3=”+str(Z3))

 3.4 计算损失函数(成本函数 Cost function)

在tensorflow 函数里 有tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=…,labels=…)) 其中

softmax_cross_entropy_with_logits是计算softmax函数

def conpute_cost(Z3,Y)
logits = tf.transpose(Z3) ##向量的转置
labels = tf.transpose(Y) ##向量的转置 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=labels))
return cost

3.5 向后传播 求导 参数更新

向后传播 主要是通过求导来进行梯度下降 然后优化参数模型

其根本就是对损失函数求最小值

优化函数:

Optimizer = tf.train.GrandientDescentOptimizer(learning_rate = learning_rate).minimize(cost)

执行函数:

_,c=sess.run([optimizer,cost],feed_dict={X:minibatch_X,Y:minibatch_Y})

3.6 一个完整的例子 (把上面的代码块汇总成功能)

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True):
"""
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. Arguments:
X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
X_test -- training set, of shape (input size = 12288, number of training examples = 120)
Y_test -- test set, of shape (output size = 6, number of test examples = 120)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 100 epochs Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
""" ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep consistent results
seed = 3 # to keep consistent results
(n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
n_y = Y_train.shape[0] # n_y : output size
costs = [] # To keep track of the cost # Create Placeholders of shape (n_x, n_y)
### START CODE HERE ### (1 line)
X, Y = create_placeholders(n_x, n_y)
### END CODE HERE ### # Initialize parameters
### START CODE HERE ### (1 line)
parameters = initialize_parameters()
### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph
### START CODE HERE ### (1 line)
Z3 = forward_propagation(X, parameters)
### END CODE HERE ### # Cost function: Add cost function to tensorflow graph
### START CODE HERE ### (1 line)
cost = compute_cost(Z3, Y)
### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
### START CODE HERE ### (1 line)
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
### END CODE HERE ### # Initialize all the variables
init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph
with tf.Session() as sess: # Run the initialization
sess.run(init) # Do the training loop
for epoch in range(num_epochs): epoch_cost = 0. # Defines a cost related to an epoch
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch
(minibatch_X, minibatch_Y) = minibatch # IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
### START CODE HERE ### (1 line)
_ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
### END CODE HERE ### epoch_cost += minibatch_cost / num_minibatches # Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost) # plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show() # lets save the parameters in a variable
parameters = sess.run(parameters)
print ("Parameters have been trained!") # Calculate the correct predictions
correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) # Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test})) return parameters

我们执行:

parameters = model(X_train, Y_train, X_test, Y_test)

得到结果:

tensorflow的 函数库很多,这里是冰山一角,还有很多需要我们去学习。后面有时间,就把图像识别的卷积的tensorflow例子给搬出研究一下。

我的大都内容来自吴恩达的公益视频和教案,特此鸣谢。

参考:吴恩达网易课程

 

tensorflow 从入门到摔掉肋骨 教程二的更多相关文章

  1. 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇

    始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...

  2. SpringBoot入门教程(二)CentOS部署SpringBoot项目从0到1

    在之前的博文<详解intellij idea搭建SpringBoot>介绍了idea搭建SpringBoot的详细过程, 并在<CentOS安装Tomcat>中介绍了Tomca ...

  3. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  4. Tensorflow高速入门2--实现手写数字识别

    Tensorflow高速入门2–实现手写数字识别 环境: 虚拟机ubuntun16.0.4 Tensorflow 版本号:0.12.0(仅使用cpu下) Tensorflow安装见: http://b ...

  5. 给深度学习入门者的Python快速教程

    给深度学习入门者的Python快速教程 基础篇 numpy和Matplotlib篇 本篇部分代码的下载地址: https://github.com/frombeijingwithlove/dlcv_f ...

  6. TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派

    TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派 来源:DataCastle数据城堡 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学 ...

  7. 【0】TensorFlow光速入门-序

    本文地址:https://www.cnblogs.com/tujia/p/13863181.html 序言: 对于我这么一个技术渣渣来说,想学习TensorFlow机器学习,实在是太难了: 百度&qu ...

  8. 【2】TensorFlow光速入门-数据预处理(得到数据集)

    本文地址:https://www.cnblogs.com/tujia/p/13862351.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  9. 无废话ExtJs 入门教程二十一[继承:Extend]

    无废话ExtJs 入门教程二十一[继承:Extend] extjs技术交流,欢迎加群(201926085) 在开发中,我们在使用视图组件时,经常要设置宽度,高度,标题等属性.而这些属性可以通过“继承” ...

随机推荐

  1. commonjs模块和es6模块的区别

    commonjs模块与es6模块的区别 到目前为止,已经实习了3个月的时间了.最近在面试,在面试题里面有题目涉及到模块循环加载的知识.趁着这个机会,将commonjs模块与es6模块之间一些重要的的区 ...

  2. Struts2 06--系统拦截器防止数据重复提交

    一.拦截器简要概述 拦截器,在AOP(Aspect-Oriented Programming)中用于在某个方法或字段被访问之前,进行拦截然后在之前或之后加入某些操作.拦截是AOP的一种实现策略. 在W ...

  3. Android基础知识笔记01—框架结构与四大组件

    -----------Andriod 01--------------->>> Andriod系统架构    linux内核与驱动层. 系统运行库层. 应用框架层. 应用层 内核驱动 ...

  4. swiper使用小结

    最近做一个移动端项目想用Swiper移动端插件,需求实现一个轮播图的效果,并且需要自定义分页器,效果跟这个差不多这里demo 好吧,开始动手! 注意参考的3.0Swiper的API文档需要引入3.0版 ...

  5. 如何才能通俗易懂的解释javascript里面的"闭包"?

    看了知乎上的话题 如何才能通俗易懂的解释javascript里面的‘闭包’?,受到一些启发,因此结合实例将回答中几个精要的答案做一个简单的分析以便加深理解. 1. "闭包就是跨作用域访问变量 ...

  6. canvas画布标签

    最近良师益友整理一些canvas的资料,加强学习了解! 当你创建一个<canvas>元素后,就拥有了它的绘图上下文. 一.简单图形 1.getContext()方法 为了在canvas上绘 ...

  7. Ubuntu远程登陆、SSH图形界面、WOL远程唤醒

    本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 实现目标:通过路由器配置路由路径,将拨号获取的公网IP地址指向局域网Ubuntu服务器.家里有 ...

  8. mongo+mongoose+express

    直接上指令: //*代表自定义名字 //使用数据库 use * //检查当前数据库 db //查询数据库列表 show dbs //查询当前数据库集合 show collections //插入文档自 ...

  9. 笔记-windbg及时调试

    当程序在测试或者老化的时候很有用,只要程序有异常抛出,就能启用windbg调试,这样就能及时的保存现场. 程序崩溃时,windows系统会调用系统默认调试器,其设置在注册表 HKEY_LOCAL_MA ...

  10. angular指令中@,=,&的区别

    当directive中的scope设置为一个对象的时候,该指令就有了一个独立的作用域,AngularJS提供了一种绑定策略用于隔离作用域和外部作用域进行通信. 1.@(or @attr) 使用@符号可 ...