题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:

v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)

请你帮助金明设计一个满足要求的购物单。

输入输出格式

输入格式: 输入的第1行,为两个正整数,用一个空格隔开:

N m (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

v p q (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

输出格式: 输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。

输入输出样例

输入样例#1:

1000 5

800 2 0

400 5 1

300 5 1

400 3 0

500 2 0

输出样例#1:

2200

分析一波之后可以看出来这是一道01背包问题,但是又有一些变化,首先,如果要买一个东西首先要确保它就是主件或其主件已经被买了,所以只对主件进行dp的话,每个主件有四种情况:1.只买主件 2.主件和附件一 3.主件和附件2 4.主件附件一附件二都买。dp的方式与裸是一样的,不过有附件的情况是将主件和附件看做一个整体,新状态需同时减去主附件的体积并加上主附件的价值才可以,换句话说一个主件更新四次,附件不更新。所以只需要在dp时知道当前物品是否是主件或其主件是哪个在dp即可。由于数据较大,所以需要用一维背包。

上代码:

 #include<cstdio>
#include<iostream>
using namespace std;
int m,n,d[],v[],val[],t,f1[],f2[];
bool head[];
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",v+i,val+i,&t);
val[i]*=v[i];
if(t){head[i]=; if(!f1[t]) f1[t]=i; else f2[t]=i;}//标记是否是附件,附件一是哪个,附件二是哪个
}
for(int i=;i<=m;i++)
{
for(int j=n;j>=v[i];j--){
if(!head[i]) {//判断是否是主件
d[j]=max(d[j],d[j-v[i]]+val[i]);//只是主件
if(j>=v[i]+v[f1[i]]) d[j]=max(d[j],d[j-v[i]-v[f1[i]]]+val[i]+val[f1[i]]);//带上附件一
if(j>=v[i]+v[f2[i]]) d[j]=max(d[j],d[j-v[i]-v[f2[i]]]+val[i]+val[f2[i]]);//附件二
if(j>=v[i]+v[f1[i]]+v[f2[i]]) d[j]=max(d[j],d[j-v[i]-v[f1[i]]-v[f2[i]]]+val[i]+val[f1[i]]+val[f2[i]]);//一二都有
}
}
}
printf("%d",d[n]);
}

金明的预算方案 NOIP 2006 提高组的更多相关文章

  1. 【动态规划】Vijos P1313 金明的预算方案(NOIP2006提高组第二题)

    题目链接: https://vijos.org/p/1313 题目大意: m(m<=32000)金钱,n(n<=60)个物品,花费vi,价值vi*ci,每个物品可能有不超过2个附件,附件没 ...

  2. NOIP 2006 金明的预算方案(洛谷P1064,动态规划递推,01背包变形,滚动数组)

    一.题目链接:P1064 金明的预算方案 二.思路 1.一共只有五种情况 @1.不买 @2.只买主件 @3.买主件和附件1(如果不存在附件也要运算,只是这时附件的数据是0,也就是算了对标准的结果也没影 ...

  3. NOIP 2006 金明的预算方案

    洛谷 P1064 金明的预算方案 https://www.luogu.org/problem/P1064 JDOJ 1420: [NOIP2006]金明的预算方案 T2 https://neooj.c ...

  4. [NOIP2006] 提高组 洛谷P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  5. 算法笔记_103:蓝桥杯练习 算法提高 金明的预算方案(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些 ...

  6. NOIP2006金明的预算方案[DP 有依赖的背包问题]

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  7. 洛谷 P1064 金明的预算方案【有依赖的分组背包】

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...

  8. 「NOIP2006」「LuoguP1064」 金明的预算方案(分组背包

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...

  9. 【dp】P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

随机推荐

  1. HTML5 Web SQL 数据库操作

    Web SQL 数据库 API 并不是 HTML5 规范的一部分,但是它是一个独立的规范,引入了一组使用 SQL 操作客户端数据库的 APIs. 以下是规范中定义的三个核心方法: openDataba ...

  2. 经验之谈——gulp使用教程

    gulp的最实用教程 使用gulp编译less.sass.压缩js等常用功能讲解 gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优化,而且在开发过程中很多 ...

  3. 计算机程序的思维逻辑 (91) - Lambda表达式

    ​在之前的章节中,我们的讨论基本都是基于Java 7的,从本节开始,我们探讨Java 8的一些特性,主要内容包括: 传递行为代码 - Lambda表达式 函数式数据处理 - 流 组合式异步编程 - C ...

  4. RabbitMQ安装|使用|概念|Golang开发

    搬砖的陈大师版权所有,转载请注明:http://www.lenggirl.com/tool/RabbitMQ.html 手册:http://www.rabbitmq.com/getstarted.ht ...

  5. Java的基本数据类型和运算

    编码 ASCII--0~127  65-A  97-a 西欧码表---ISO-8859-1---0-255---1个字节 gb2312----0-65535---gbk---2个字节 Unicode编 ...

  6. input输入框自动填充黄色背景解决方案

    chrome表单自动填充后,input文本框的背景会变成偏黄色的,这是由于chrome会默认给自动填充的input表单加上input:-webkit-autofill私有属性,然后对其赋予以下样式: ...

  7. poj_2104: K-th Number 【主席树】

    题目链接 学习了一下主席树,感觉具体算法思路不大好讲.. 大概是先建个空线段树,然后类似于递推,每一个都在前一个"历史版本"的基础上建立一个新的"历史版本",每 ...

  8. 机器学习 —— 类不平衡问题与SMOTE过采样算法

    在前段时间做本科毕业设计的时候,遇到了各个类别的样本量分布不均的问题——某些类别的样本数量极多,而有些类别的样本数量极少,也就是所谓的类不平衡(class-imbalance)问题. 本篇简述了以下内 ...

  9. AugularJS从入门到实践(三)

      前  言  前端    AngularJS是为了克服HTML在构建应用上的不足而设计的.(引用百度百科) AngularJS使用了不同的方法,它尝试去补足HTML本身在构建应用方面的缺陷.Angu ...

  10. MQ通道搭建以及连通性检查

    场景:项目开发中使用的mq中间件一直不太熟悉,遇到问题就需要问人,公司的同事也不怎么爱搭理,弄的好受伤!不熟悉的时候只是感觉好难,逼的没办法,好好研究下,发现里面的过程也没想象中的难, 经过一番研究, ...