The Moronic Cowmpouter
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4006   Accepted: 2079

Description

Inexperienced in the digital arts, the cows tried to build a calculating engine (yes, it's a cowmpouter) using binary numbers (base 2) but instead built one based on base negative 2! They were quite pleased since numbers expressed
in base −2 do not have a sign bit.



You know number bases have place values that start at 1 (base to the 0 power) and proceed right-to-left to base^1, base^2, and so on. In base −2, the place values are 1, −2, 4, −8, 16, −32, ... (reading from right to left). Thus, counting from 1 goes like this:
1, 110, 111, 100, 101, 11010, 11011, 11000, 11001, and so on.



Eerily, negative numbers are also represented with 1's and 0's but no sign. Consider counting from −1 downward: 11, 10, 1101, 1100, 1111, and so on.



Please help the cows convert ordinary decimal integers (range -2,000,000,000..2,000,000,000) to their counterpart representation in base −2.

Input

Line 1: A single integer to be converted to base −2

Output

Line 1: A single integer with no leading zeroes that is the input integer converted to base −2. The value 0 is expressed as 0, with exactly one 0.

Sample Input

-13

Sample Output

110111

Hint

Explanation of the sample:



Reading from right-to-left:

1*1 + 1*-2 + 1*4 + 0*-8 +1*16 + 1*-32 = -13

Source

USACO 2006 February Bronze



思路:

转化成为-2进制,原理同2进制相同。

举例模拟一个,整数10的情况

10/-2=-5......0

-5/-2=3......1

3/-2=-1......1

-1/-2=1......1

1/-2=0......1

0结束

最后的结果就是11110。

整除的情况就是0,如果不能整除,需要进行处理,-1之后再去-2得到商,余数为1。

因为-2进制最后保存只会存在0或者1,不能有其他情况。举例来说:

3/-2商为-1时,余数为1。商为-2时,结果为-1。



0的时候做特殊处理。



代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int main()
{
int num;
scanf("%d",&num);
string s="";
if(num==0)
{
cout<<"0"<<endl;
return 0;
}
while(num!=0)
{
int temp=fabs(num);
if(temp%2)
{
s+="1";
num=(num-1)/(-2);
}
else
{
s+="0";
num=num/(-2);
}
}
reverse(s.begin(),s.end());
cout<<s<<endl;
return 0;
}

POJ3191-The Moronic Cowmpouter的更多相关文章

  1. A - The Moronic Cowmpouter

    Description Inexperienced in the digital arts, the cows tried to build a calculating engine (yes, it ...

  2. POJ 3191 The Moronic Cowmpouter(进制转换)

    题目链接 题意 : 将一个10进制整数转化为-2进制的数. 思路 :如果你将-2进制下的123转化为十进制是1*(-2)^2+2*(-2)^1+3*(-2)^0.所以十进制转化为-2进制就是一个逆过程 ...

  3. The Moronic Cowmpouter(负进位制转换)

    http://poj.org/problem?id=3191 题意:将一个整型的十进制整数转化为-2进制整数. #include <stdio.h> #include <algori ...

  4. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

  5. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  6. poj3191(负进位制)

    题目链接:https://vjudge.net/problem/POJ-3191 题意:将一个int范围的整数用-2进制表示并输出. 思路:将十进制转换成-2进制,原理也类似于短除法.但不同的是不是简 ...

  7. poj3191(进制转换)

    题目链接:http://poj.org/problem?id=3191 题意:将一个数转换为-2为基数的数 思路:套路,看代码就好了 代码: #include <iostream> usi ...

  8. POJ3191【(-2)进制本质】

    题意: 实现10进制数转换成-2进制数 思路: 有点意思,先扯些题外话,一个我们经常做的二进制:利用二进制有好多优化,大多都是利用了二进制能够表示一个数,然后优化了空间或者时间. 所以问题很清楚啊,就 ...

随机推荐

  1. LeetCode 112. Path Sum (二叉树路径之和)

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  2. VB 用代码创建的控件和接收事件

    在声明公共变量的位置加上这句就可以了 Dim WithEvents NewButton As Button form_load中添加 NewButton = New Button        New ...

  3. Input文本框属性及js

    <input id="txt_uname" maxlength="16" onblur="validata()" onkeyup=&q ...

  4. ubuntu上安装adt时无法在线安装的问题

    安装了新的ubuntu系统之后,就得重新布置android开发环境了. 找了网上的教程,一步一步做,到了在eclipse上在线下载adt总是出现 Unable to connect to reposi ...

  5. A+B problems

    这几道习题大概是ACM输入输出格式的普及 P1:---------------------------------------------------------------------------- ...

  6. Django开发小型站之前期准备(一)

    语言:python3.5 工具:JetBrains PyCharm virtualenvwrapper优点: 1.使不同的应用开发环境独立 2.环境升级不影响其他应用,也不会影响全局的python环境 ...

  7. HDU1150 Machine Schedule(二分图最大匹配、最小点覆盖)

    As we all know, machine scheduling is a very classical problem in computer science and has been stud ...

  8. Maximum Clique

    Maximum Clique Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  9. C++求出旋转数组的最小数字

    今天遇到这么一道题目,感觉很有意思,要记下来! 题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4 ...

  10. CentOS7安装配置vncserver

    系统环境:CentOS Linux release 7.4.1708 Kernel:3.10.0-693.el7.x86_64 系统现状:最小化安装,没有安装任何图形支持软件 安装图形化支持 不建议安 ...