package org.hbz.test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.junit.Test;

/*
 * Desc:八种排序算法
 *
 * CSDN:dream361
 *
 * QQ:2388991230(放心'飞吧)
 *
 * Email:gloryzheng@126.com
 *
 * Date:2017年1月22日
 *
 * */
public class SortMethod {

	/*
	 * 1.直接插入排序 基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,
	 * 现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
	 */
	@Test
	public void insertSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62,
				99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		int temp = 0;
		for (int i = 1; i < a.length; i++) {
			temp = a[i];
			int j = i - 1;
			for (; j >= 0 && temp < a[j]; j--) {
				a[j + 1] = a[j]; // 将大于temp的值整体后移一个单位
			}
			a[j + 1] = temp;
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 2.希尔排序 基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.
	 * 对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。
	 * 当增量减到1时,进行直接插入排序后,排序完成。
	 */
	@Test
	public void shellSort() {
		int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };
		double d1 = a.length;
		int temp = 0;
		while (true) {
			d1 = Math.ceil(d1 / 2);
			int d = (int) d1;
			for (int x = 0; x < d; x++) {
				for (int i = x + d; i < a.length; i += d) {
					int j = i - d;
					temp = a[i];
					for (; j >= 0 && temp < a[j]; j -= d) {
						a[j + d] = a[j];
					}
					a[j + d] = temp;
				}
			}
			if (d == 1)
				break;
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 3.简单选择排序 (1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
	 * 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
	 */
	@Test
	public void selectSort() {
		int a[] = { 1, 54, 6, 3, 78, 34, 12, 45 };
		int position = 0;
		for (int i = 0; i < a.length; i++) {

			int j = i + 1;
			position = i;
			int temp = a[i];
			for (; j < a.length; j++) {
				if (a[j] < temp) {
					temp = a[j];
					position = j;
				}
			}
			a[position] = a[i];
			a[i] = temp;
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 4.堆排序 基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
	 * 堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)
	 * (i=1,2,…,n/2)时称之为堆。
	 * 在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。
	 * 堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。
	 * 然后将根节点与堆的最后一个节点交换
	 * 。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。
	 * 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。
	 * 所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
	 */
	@Test
	public void heapSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };

		System.out.println("开始排序");
		int arrayLength = a.length;
		// 循环建堆
		for (int i = 0; i < arrayLength - 1; i++) {
			// 建堆

			buildMaxHeap(a, arrayLength - 1 - i);
			// 交换堆顶和最后一个元素
			swap(a, 0, arrayLength - 1 - i);
			System.out.println(Arrays.toString(a));
		}
	}

	private void swap(int[] data, int i, int j) {
		// TODO Auto-generated method stub
		int tmp = data[i];
		data[i] = data[j];
		data[j] = tmp;
	}

	// 对data数组从0到lastIndex建大顶堆
	private void buildMaxHeap(int[] data, int lastIndex) {
		// TODO Auto-generated method stub
		// 从lastIndex处节点(最后一个节点)的父节点开始
		for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
			// k保存正在判断的节点
			int k = i;
			// 如果当前k节点的子节点存在
			while (k * 2 + 1 <= lastIndex) {
				// k节点的左子节点的索引
				int biggerIndex = 2 * k + 1;
				// 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
				if (biggerIndex < lastIndex) {
					// 若果右子节点的值较大
					if (data[biggerIndex] < data[biggerIndex + 1]) {
						// biggerIndex总是记录较大子节点的索引
						biggerIndex++;
					}
				}
				// 如果k节点的值小于其较大的子节点的值
				if (data[k] < data[biggerIndex]) {
					// 交换他们
					swap(data, k, biggerIndex);
					// 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
					k = biggerIndex;
				} else {
					break;
				}
			}
		}
	}

	/*
	 * 5.冒泡排序 基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,
	 * 让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
	 */
	@Test
	public void bubbleSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62,
				99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		int temp = 0;
		for (int i = 0; i < a.length - 1; i++) {
			for (int j = 0; j < a.length - 1 - i; j++) {
				if (a[j] > a[j + 1]) {
					temp = a[j];
					a[j] = a[j + 1];
					a[j + 1] = temp;
				}
			}
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 6.快速排序
	 * 基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素
	 * ,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
	 */
	@Test
	public void quickSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		quick(a);
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}
	public void quick(int[] a2) {
		if (a2.length > 0) { // 查看数组是否为空
			_quickSort(a2, 0, a2.length - 1);
		}
	}
	public void _quickSort(int[] list, int low, int high) {
		if (low < high) {
			int middle = getMiddle(list, low, high); // 将list数组进行一分为二
			_quickSort(list, low, middle - 1); // 对低字表进行递归排序
			_quickSort(list, middle + 1, high); // 对高字表进行递归排序
		}
	}
	public int getMiddle(int[] list, int low, int high) {
		int tmp = list[low]; // 数组的第一个作为中轴
		while (low < high) {
			while (low < high && list[high] >= tmp) {

				high--;
			}
			list[low] = list[high]; // 比中轴小的记录移到低端
			while (low < high && list[low] <= tmp) {
				low++;
			}
			list[high] = list[low]; // 比中轴大的记录移到高端
		}
		list[low] = tmp; // 中轴记录到尾
		return low; // 返回中轴的位置
	}

	/*
	 * 7.归并排序 基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,
	 * 每个子序列是有序的 。然后再把有序子序列合并为整体有序序列。
	 */
	@Test
	public void mergingSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		sort(a, 0, a.length - 1);
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	public void sort(int[] data, int left, int right) {
		// TODO Auto-generated method stub
		if (left < right) {
			// 找出中间索引
			int center = (left + right) / 2;
			// 对左边数组进行递归
			sort(data, left, center);
			// 对右边数组进行递归
			sort(data, center + 1, right);
			// 合并
			merge(data, left, center, right);

		}
	}

	public void merge(int[] data, int left, int center, int right) {
		// TODO Auto-generated method stub
		int[] tmpArr = new int[data.length];
		int mid = center + 1;
		// third记录中间数组的索引
		int third = left;
		int tmp = left;
		while (left <= center && mid <= right) {

			// 从两个数组中取出最小的放入中间数组
			if (data[left] <= data[mid]) {
				tmpArr[third++] = data[left++];
			} else {
				tmpArr[third++] = data[mid++];
			}
		}
		// 剩余部分依次放入中间数组
		while (mid <= right) {
			tmpArr[third++] = data[mid++];
		}
		while (left <= center) {
			tmpArr[third++] = data[left++];
		}
		// 将中间数组中的内容复制回原数组
		while (tmp <= right) {
			data[tmp] = tmpArr[tmp++];
		}
		System.out.println(Arrays.toString(data));
	}

	/*
	 * 8.基数排序 基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。
	 * 然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
	 */
	@Test
	public void radixSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 101, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		sort(a);
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	public void sort(int[] array) {

		// 首先确定排序的趟数;
		int max = array[0];
		for (int i = 1; i < array.length; i++) {
			if (array[i] > max) {
				max = array[i];
			}
		}

		int time = 0;
		// 判断位数;
		while (max > 0) {
			max /= 10;
			time++;
		}

		// 建立10个队列;
		List<ArrayList> queue = new ArrayList<ArrayList>();
		for (int i = 0; i < 10; i++) {
			ArrayList<Integer> queue1 = new ArrayList<Integer>();
			queue.add(queue1);
		}

		// 进行time次分配和收集;
		for (int i = 0; i < time; i++) {

			// 分配数组元素;
			for (int j = 0; j < array.length; j++) {
				// 得到数字的第time+1位数;
				int x = array[j] % (int) Math.pow(10, i + 1)
						/ (int) Math.pow(10, i);
				ArrayList<Integer> queue2 = queue.get(x);
				queue2.add(array[j]);
				queue.set(x, queue2);
			}
			int count = 0;// 元素计数器;
			// 收集队列元素;
			for (int k = 0; k < 10; k++) {
				while (queue.get(k).size() > 0) {
					ArrayList<Integer> queue3 = queue.get(k);
					array[count] = queue3.get(0);
					queue3.remove(0);
					count++;
				}
			}
		}

	}

}
package org.hbz.test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.junit.Test;

/*
 * Desc:八种排序算法
 *
 * CSDN:dream361
 *
 * QQ:2388991230(放心'飞吧)
 *
 * Email:gloryzheng@126.com
 *
 * Date:2017年1月22日
 *
 * */
public class SortMethod {

	/*
	 * 1.直接插入排序 基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,
	 * 现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
	 */
	@Test
	public void insertSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62,
				99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		int temp = 0;
		for (int i = 1; i < a.length; i++) {
			temp = a[i];
			int j = i - 1;
			for (; j >= 0 && temp < a[j]; j--) {
				a[j + 1] = a[j]; // 将大于temp的值整体后移一个单位
			}
			a[j + 1] = temp;
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 2.希尔排序 基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.
	 * 对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。
	 * 当增量减到1时,进行直接插入排序后,排序完成。
	 */
	@Test
	public void shellSort() {
		int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };
		double d1 = a.length;
		int temp = 0;
		while (true) {
			d1 = Math.ceil(d1 / 2);
			int d = (int) d1;
			for (int x = 0; x < d; x++) {
				for (int i = x + d; i < a.length; i += d) {
					int j = i - d;
					temp = a[i];
					for (; j >= 0 && temp < a[j]; j -= d) {
						a[j + d] = a[j];
					}
					a[j + d] = temp;
				}
			}
			if (d == 1)
				break;
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 3.简单选择排序 (1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
	 * 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
	 */
	@Test
	public void selectSort() {
		int a[] = { 1, 54, 6, 3, 78, 34, 12, 45 };
		int position = 0;
		for (int i = 0; i < a.length; i++) {

			int j = i + 1;
			position = i;
			int temp = a[i];
			for (; j < a.length; j++) {
				if (a[j] < temp) {
					temp = a[j];
					position = j;
				}
			}
			a[position] = a[i];
			a[i] = temp;
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 4.堆排序 基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
	 * 堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)
	 * (i=1,2,…,n/2)时称之为堆。
	 * 在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。
	 * 堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。
	 * 然后将根节点与堆的最后一个节点交换
	 * 。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。
	 * 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。
	 * 所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
	 */
	@Test
	public void heapSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };

		System.out.println("开始排序");
		int arrayLength = a.length;
		// 循环建堆
		for (int i = 0; i < arrayLength - 1; i++) {
			// 建堆

			buildMaxHeap(a, arrayLength - 1 - i);
			// 交换堆顶和最后一个元素
			swap(a, 0, arrayLength - 1 - i);
			System.out.println(Arrays.toString(a));
		}
	}

	private void swap(int[] data, int i, int j) {
		// TODO Auto-generated method stub
		int tmp = data[i];
		data[i] = data[j];
		data[j] = tmp;
	}

	// 对data数组从0到lastIndex建大顶堆
	private void buildMaxHeap(int[] data, int lastIndex) {
		// TODO Auto-generated method stub
		// 从lastIndex处节点(最后一个节点)的父节点开始
		for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
			// k保存正在判断的节点
			int k = i;
			// 如果当前k节点的子节点存在
			while (k * 2 + 1 <= lastIndex) {
				// k节点的左子节点的索引
				int biggerIndex = 2 * k + 1;
				// 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
				if (biggerIndex < lastIndex) {
					// 若果右子节点的值较大
					if (data[biggerIndex] < data[biggerIndex + 1]) {
						// biggerIndex总是记录较大子节点的索引
						biggerIndex++;
					}
				}
				// 如果k节点的值小于其较大的子节点的值
				if (data[k] < data[biggerIndex]) {
					// 交换他们
					swap(data, k, biggerIndex);
					// 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
					k = biggerIndex;
				} else {
					break;
				}
			}
		}
	}

	/*
	 * 5.冒泡排序 基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,
	 * 让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
	 */
	@Test
	public void bubbleSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62,
				99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		int temp = 0;
		for (int i = 0; i < a.length - 1; i++) {
			for (int j = 0; j < a.length - 1 - i; j++) {
				if (a[j] > a[j + 1]) {
					temp = a[j];
					a[j] = a[j + 1];
					a[j + 1] = temp;
				}
			}
		}
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	/*
	 * 6.快速排序
	 * 基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素
	 * ,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
	 */
	@Test
	public void quickSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		quick(a);
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}
	public void quick(int[] a2) {
		if (a2.length > 0) { // 查看数组是否为空
			_quickSort(a2, 0, a2.length - 1);
		}
	}
	public void _quickSort(int[] list, int low, int high) {
		if (low < high) {
			int middle = getMiddle(list, low, high); // 将list数组进行一分为二
			_quickSort(list, low, middle - 1); // 对低字表进行递归排序
			_quickSort(list, middle + 1, high); // 对高字表进行递归排序
		}
	}
	public int getMiddle(int[] list, int low, int high) {
		int tmp = list[low]; // 数组的第一个作为中轴
		while (low < high) {
			while (low < high && list[high] >= tmp) {

				high--;
			}
			list[low] = list[high]; // 比中轴小的记录移到低端
			while (low < high && list[low] <= tmp) {
				low++;
			}
			list[high] = list[low]; // 比中轴大的记录移到高端
		}
		list[low] = tmp; // 中轴记录到尾
		return low; // 返回中轴的位置
	}

	/*
	 * 7.归并排序 基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,
	 * 每个子序列是有序的 。然后再把有序子序列合并为整体有序序列。
	 */
	@Test
	public void mergingSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		sort(a, 0, a.length - 1);
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	public void sort(int[] data, int left, int right) {
		// TODO Auto-generated method stub
		if (left < right) {
			// 找出中间索引
			int center = (left + right) / 2;
			// 对左边数组进行递归
			sort(data, left, center);
			// 对右边数组进行递归
			sort(data, center + 1, right);
			// 合并
			merge(data, left, center, right);

		}
	}

	public void merge(int[] data, int left, int center, int right) {
		// TODO Auto-generated method stub
		int[] tmpArr = new int[data.length];
		int mid = center + 1;
		// third记录中间数组的索引
		int third = left;
		int tmp = left;
		while (left <= center && mid <= right) {

			// 从两个数组中取出最小的放入中间数组
			if (data[left] <= data[mid]) {
				tmpArr[third++] = data[left++];
			} else {
				tmpArr[third++] = data[mid++];
			}
		}
		// 剩余部分依次放入中间数组
		while (mid <= right) {
			tmpArr[third++] = data[mid++];
		}
		while (left <= center) {
			tmpArr[third++] = data[left++];
		}
		// 将中间数组中的内容复制回原数组
		while (tmp <= right) {
			data[tmp] = tmpArr[tmp++];
		}
		System.out.println(Arrays.toString(data));
	}

	/*
	 * 8.基数排序 基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。
	 * 然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
	 */
	@Test
	public void radixSort() {
		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
				98, 54, 101, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
		sort(a);
		for (int i = 0; i < a.length; i++)
			System.out.println(a[i]);
	}

	public void sort(int[] array) {

		// 首先确定排序的趟数;
		int max = array[0];
		for (int i = 1; i < array.length; i++) {
			if (array[i] > max) {
				max = array[i];
			}
		}

		int time = 0;
		// 判断位数;
		while (max > 0) {
			max /= 10;
			time++;
		}

		// 建立10个队列;
		List<ArrayList> queue = new ArrayList<ArrayList>();
		for (int i = 0; i < 10; i++) {
			ArrayList<Integer> queue1 = new ArrayList<Integer>();
			queue.add(queue1);
		}

		// 进行time次分配和收集;
		for (int i = 0; i < time; i++) {

			// 分配数组元素;
			for (int j = 0; j < array.length; j++) {
				// 得到数字的第time+1位数;
				int x = array[j] % (int) Math.pow(10, i + 1)
						/ (int) Math.pow(10, i);
				ArrayList<Integer> queue2 = queue.get(x);
				queue2.add(array[j]);
				queue.set(x, queue2);
			}
			int count = 0;// 元素计数器;
			// 收集队列元素;
			for (int k = 0; k < 10; k++) {
				while (queue.get(k).size() > 0) {
					ArrayList<Integer> queue3 = queue.get(k);
					array[count] = queue3.get(0);
					queue3.remove(0);
					count++;
				}
			}
		}

	}

}

8种Java排序算法整理的更多相关文章

  1. 常见的几种java排序算法

    一.分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序(冒泡排序.快速排序) 3)选择排序(直接选择排序.堆排序) 4)归并排序 5)分配排序(基数排序) 所需辅助空间最多:归并排序 所需辅 ...

  2. 7种基本排序算法的Java实现

    7种基本排序算法的Java实现 转自我的Github 以下为7种基本排序算法的Java实现,以及复杂度和稳定性的相关信息. 以下为代码片段,完整的代码见Sort.java 插入排序 /** * 直接插 ...

  3. 七种经典排序算法及Java实现

    排序算法稳定性表示两个值相同的元素在排序前后是否有位置变化.如果前后位置变化,则排序算法是不稳定的,否则是稳定的.稳定性的定义符合常理,两个值相同的元素无需再次交换位置,交换位置是做了一次无用功. 下 ...

  4. PHP四种基本排序算法

    PHP的四种基本排序算法为:冒泡排序.插入排序.选择排序和快速排序. 下面是我整理出来的算法代码: 1. 冒泡排序: 思路:对数组进行多轮冒泡,每一轮对数组中的元素两两比较,调整位置,冒出一个最大的数 ...

  5. java排序算法(一):概述

    java排序算法(一)概述 排序是程序开发中一种非常常见的操作,对一组任意的数据元素(活记录)经过排序操作后,就可以把它们变成一组按关键字排序的一组有序序列 对一个排序的算法来说,一般从下面三个方面来 ...

  6. java排序算法(十):桶式排序

    java排序算法(十):桶式排序 桶式排序不再是一种基于比较的排序方法,它是一种比较巧妙的排序方式,但这种排序方式需要待排序的序列满足以下两个特征: 待排序列所有的值处于一个可枚举的范围之类: 待排序 ...

  7. java排序算法(四):冒泡排序

    java排序算法(四):冒泡排序 冒泡排序是计算机的一种排序方法,它的时间复杂度是o(n^2),虽然不及堆排序.快速排序o(nlogn,底数为2).但是有两个优点 1.编程复杂度很低.很容易写出代码 ...

  8. Java排序算法之快速排序

    Java排序算法之快速排序 快速排序(Quicksort)是对冒泡排序的一种改进. 快速排序由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分 ...

  9. (排序算法整理)NEFU 30/32

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/caihongshijie6/article/details/26165093        事实上, ...

随机推荐

  1. 面向对象设计模式——观察者(OBSERVER)模式

    定义 定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新.  Observer模式描述了如何建立这种关系.这一模式中的关键对象是目标(subject ...

  2. <经验杂谈>Mysql中字符串处理的几种处理方法concat、concat_ws、group_concat

    Mysql中字符串处理的几种处理方法concat.concat_ws.group_concat以下详情: MySQL中concat函数使用方法:CONCAT(str1,str2,-) 返回结果为连接参 ...

  3. 父(Spring)子(SpringMVC)容器之初解篇

    Spring和SpringMVC作为Bean管理容器和MVC层的默认框架,已被众多WEB应用采用,而在实际开发中,由于有了强大的注解功能,很多基于XML的配置方式已经被替代,但在实际项目中,我们经常会 ...

  4. arcgis for javascript 自定义infowindow

    arcgis 自己的infowindow 太难看了,放在系统中与系统中的风格格格不入,在参考了网上的一些资料后,整理编写了适合自己系统的infowindow,与大家分享. 1.自定义展示效果 2.In ...

  5. POI读取excel工具类 返回实体bean集合(xls,xlsx通用)

    本文举个简单的实例 读取上图的 excel文件到 List<User>集合 首先 导入POi 相关 jar包 在pom.xml 加入 <!-- poi --> <depe ...

  6. 老生常谈之SQL Server (行转列,列转行)

    Open the first article 在本文章中主要介绍以下内容: 1.静态行转列 2.静态列转行 3.动态行转列 4.动态列转行 1.静态行转列 --静态的行转列 --新建一个科目成绩表 - ...

  7. 设计模式的征途—16.访问者(Visitor)模式

    在患者就医时,医生会根据病情开具处方单,很多医院都会存在以下这个流程:划价人员拿到处方单之后根据药品名称和数量计算总价,而药房工作人员根据药品名称和数量准备药品,如下图所示. 在软件开发中,有时候也需 ...

  8. Java 9 揭秘全目录汇总

    Tips 做一个终身学习的人. 当写这篇文章时,关于Java 9的学习就先告一段落了. 首先介绍一下背景,大概两个月前,我突然有兴趣想看看Java 9,当时读了一本英文原著<Java 9 Rev ...

  9. HDU-1495 非常可乐 (嵌套结构体-广搜 对比 一般广搜)

    题意 大家一定觉的运动以后喝可乐是一件很惬意的事情,但是seeyou却不这么认为.因为每次当seeyou买了可乐以后,阿牛就要求和seeyou一起分享这一瓶可乐,而且一定要喝的和seeyou一样多.但 ...

  10. Django 最好的缓存memcached的使用 小记

    嗯,咳咳咳咳咳,这是在win平台上.linux平台上没折腾 首先你要在win上安装 Memcache 下载 :点我下载 里面有x64 和 x86 的.根据自己的系统版本来选择使用   使用命令行: 1 ...