/*poj 3243
*解决高次同余方程的应用,已知 X^Y = K mod Z, 及X,Z,K的值,求 Y 的值
*/ #include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define lint __int64
#define MAXN 131071
struct HashNode { lint data, id, next; };
HashNode hash[MAXN<<1];
bool flag[MAXN<<1];
lint top; void Insert ( lint a, lint b )
{
lint k = b & MAXN;
if ( flag[k] == false )
{
flag[k] = true;
hash[k].next = -1;
hash[k].id = a;
hash[k].data = b;
return;
}
while( hash[k].next != -1 )
{
if( hash[k].data == b ) return;
k = hash[k].next;
}
if ( hash[k].data == b ) return;
hash[k].next = ++top;
hash[top].next = -1;
hash[top].id = a;
hash[top].data = b;
} lint Find ( lint b )
{
lint k = b & MAXN;
if( flag[k] == false ) return -1;
while ( k != -1 )
{
if( hash[k].data == b ) return hash[k].id;
k = hash[k].next;
}
return -1;
} lint gcd ( lint a, lint b )
{
return b ? gcd ( b, a % b ) : a;
} lint ext_gcd (lint a, lint b, lint& x, lint& y )
{
lint t, ret;
if ( b == 0 )
{
x = 1, y = 0;
return a;
}
ret = ext_gcd ( b, a % b, x, y );
t = x, x = y, y = t - a / b * y;
return ret;
} lint mod_exp ( lint a, lint b, lint n )
{
lint ret = 1;
a = a % n;
while ( b >= 1 )
{
if( b & 1 )
ret = ret * a % n;
a = a * a % n;
b >>= 1;
}
return ret;
} lint BabyStep_GiantStep ( lint A, lint B, lint C )
{
top = MAXN; B %= C;
lint tmp = 1, i;
for ( i = 0; i <= 100; tmp = tmp * A % C, i++ )
if ( tmp == B % C ) return i; lint D = 1, cnt = 0;
while( (tmp = gcd(A,C)) !=1 )
{
if( B % tmp ) return -1;
C /= tmp;
B /= tmp;
D = D * A / tmp % C;
cnt++;
} lint M = (lint)ceil(sqrt(C+0.0));
for ( tmp = 1, i = 0; i <= M; tmp = tmp * A % C, i++ )
Insert ( i, tmp ); lint x, y, K = mod_exp( A, M, C );
for ( i = 0; i <= M; i++ )
{
ext_gcd ( D, C, x, y ); // D * X = 1 ( mod C )
tmp = ((B * x) % C + C) % C;
if( (y = Find(tmp)) != -1 )
return i * M + y + cnt;
D = D * K % C;
}
return -1;
} int main()
{
lint A, B, C;
while( scanf("%I64d%I64d%I64d",&A,&C,&B ) !=EOF )
{
if ( !A && !B && !C ) break;
memset(flag,0,sizeof(flag));
lint tmp = BabyStep_GiantStep ( A, B, C );
if ( tmp == -1 )puts("No Solution");
else printf("%I64d\n",tmp);
}
return 0;
}

ACM_高次同余方程的更多相关文章

  1. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  2. 【解高次同余方程】51nod1038 X^A Mod P

    1038 X^A Mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 X^A mod P = B,其中P为质数.给出P和A B,求< P的所有X. 例如:P = 11 ...

  3. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  4. 高次同余方程模板BabyStep-GiantStep

    /************************************* ---高次同余方程模板BabyStep-GiantStep--- 输入:对于方程A^x=B(mod C),调用BabySt ...

  5. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  6. 高次同余方程 $BSGS$

    第一篇\(Blog\)... 还是决定把\(luogu\)上的那篇搬过来了. BSGS,又名北上广深 它可以用来求\(a^x \equiv b (mod \ n)\)这个同余方程的一个解,其中\(a, ...

  7. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  8. 【hdu2815-Mod Tree】高次同余方程-拓展BadyStepGaintStep

    http://acm.hdu.edu.cn/showproblem.php?pid=2815 题意:裸题... 关于拓展BSGS的详细解释我写了一篇博文:http://www.cnblogs.com/ ...

  9. 【poj3243-Clever Y】高次同余方程-拓展BabyStepGiantStep

    http://poj.org/problem?id=3243 题意:给定X,Z,K,求一个最小的Y满足XY mod Z = K. 关于拓展BSGS的详细解释我写了一篇博文:http://www.cnb ...

随机推荐

  1. 第2章KNN算法笔记_函数classify0

    <机器学习实战>知识点笔记目录 K-近邻算法(KNN)思想: 1,计算未知样本与所有已知样本的距离 2,按照距离递增排序,选前K个样本(K<20) 3,针对K个样本统计各个分类的出现 ...

  2. Android 再按一次退出程序三种办法

    在Xamarin android中双击返回键退出程序的第一种做法 思路就是当用户按下返回键的时间超过两秒就退出,根据Keycode.Back判断用户按下的是返回键,重写这个OnKeyDown Date ...

  3. bzoj 4446: [Scoi2015]小凸玩密室

    Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...

  4. JS画几何图形之二【圆】

    半径为r的圆上的点p(x,y)与圆心O(x0,y0)的关系: x = x0+rcosA;  y = y0+rsinA ,A为弧度 样例:http://www.zhaojz.com.cn/demo/dr ...

  5. 【WebGL】《WebGL编程指南》读书笔记——第2章

    一.前言 最近看了<WebGL编程指南>这本书,发现还是很有意思的,故每章阅读后做个笔记. 二.正文 Example1:在canvas中绘制矩形 <!DOCTYPE html> ...

  6. LAMP第三部分php,mysql配置

    php配置 1. 配置disable_functiondisable_functions = eval,assert,popen,passthru,escapeshellarg,escapeshell ...

  7. Git Pro读书笔记

    本文为Git Pro读书笔记,所有内容均来自Git Pro 1 Git基础 1.1 记录每次更新到仓库 在Git里,文件有4种状态,modified, staged, commited, 还有一种状态 ...

  8. Mysql5.7.20 On Windows安装指导

    安装环境 Windows版本:Windows10 64bit MySQL版本: MySQL5.7.20 配置过程 1.下载MySQL Community Server (下载链接) 根据自己操作系统需 ...

  9. @NotEmpty、@NotBlank、@NotNull的区别

    @NotEmpty 用在集合类上面  @NotBlank 用在String上面  @NotNull 用在基本类型上 只有简单的结果,但是再更具体一点的内容就搜不到了,所以去看了看源码,发现了如下的注释 ...

  10. CSS3背景渐变。。。

    CSS3 Gradient 分为 linear-gradient(线性渐变)和 radial-gradient(径向渐变).而我们今天主要是针对线性渐变来剖析其具体的用法.为了更好的应用 CSS3 G ...