House Man

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3605    Accepted Submission(s): 1517

Problem Description
In Fuzhou, there is a crazy super man. He can’t fly, but he could jump from housetop to housetop. Today he plans to use N houses to hone his house hopping skills. He will start at the shortest house and make N-1 jumps, with each jump taking him to a taller house than the one he is jumping from. When finished, he will have been on every house exactly once, traversing them in increasing order of height, and ending up on the tallest house.
The man can travel for at most a certain horizontal distance D in a single jump. To make this as much fun as possible, the crazy man want to maximize the distance between the positions of the shortest house and the tallest house.
The crazy super man have an ability—move houses. So he is going to move the houses subject to the following constraints:
1. All houses are to be moved along a one-dimensional path.
2. Houses must be moved at integer locations along the path, with no two houses at the same location.
3. Houses must be arranged so their moved ordering from left to right is the same as their ordering in the input. They must NOT be sorted by height, or reordered in any way. They must be kept in their stated order.
4. The super man can only jump so far, so every house must be moved close enough to the next taller house. Specifically, they must be no further than D apart on the ground (the difference in their heights doesn't matter).
Given N houses, in a specified order, each with a distinct integer height, help the super man figure out the maximum possible distance they can put between the shortest house and the tallest house, and be able to use the houses for training.
 
Input
In the first line there is an integer T, indicates the number of test cases.(T<=500)
Each test case begins with a line containing two integers N (1 ≤ N ≤ 1000) and D (1 ≤ D ≤1000000). The next line contains N integer, giving the heights of the N houses, in the order that they should be moved. Within a test case, all heights will be unique.
 
Output
For each test case , output “Case %d: “first where d is the case number counted from one, then output a single integer representing the maximum distance between the shortest and tallest house, subject to the constraints above, or -1 if it is impossible to lay out the houses. Do not print any blank lines between answers.
 
Sample Input
3
4 4
20 30 10 40
5 6
20 34 54 10 15
4 2
10 20 16 13
 
Sample Output
Case 1: 3
Case 2: 3
Case 3: -1
 
Author
jyd
 
Source
 
题目意思:
n个房子,线性一维排列,房子有高度,房子不能在同一个位置,现在有一个超人,从最低的房子开始跳,
每次跳的房子的高度要求比上一个房子的高度高,每个房子都要跳,最后要停在最高的房子上
你可以随意改变任意房子之间的距离,但是不能改变房子的相对位置
每次超人最多跳D远,问你超人跳完之后
最低的房子和最高的房子之间的距离最大可以是多少?
分析:
每次要求跳的高度递增且要是最高的房子结束
说明跳的房子的顺序已经排列好了
给线性一维上的房子编个号,1到n
按照高度升序排序,得到的编号顺序就是跳的顺序
假设x[i]:表示房子i的位置
x[i]-x[j]表示房子i和j之间的距离,i>j
比如样例1
高度:20 30 10 40
编号:1  2  3  4
按照高度升序排序之后,跳的顺序为:3 1 2 4
对每次跳:
x[3]-x[1]<=d
x[2]-x[1]<=d
x[4]-x[2]<=d
注意每次都是编号大的房子位置减去编号小的房子位置,这样才能得到两者间的距离
隐藏关系:同一个位置不能有两个房子
则:x[i]-x[i-1]>=1,i属于2到n
变形一下:x[i-1]-x[i]<=-1
现在所有的约束关系是都是这个形式:x[i]-x[j]<=x
开始建图,j->i 权值为x
比如上面的样例:
1->3 权值4
11->2 权值4
2->4 权值4
2->1 权值-1
3->2 权值-1
题目要求是从最低的房子到最高的房子的最大距离
注意:是最高房子和最低房子中编号小的房子出发,做起点
最高房子和最低房子中编号大的房子结束,做终点
因为高的房子编号不一定大,低的房子编号不一定小
然后因为表达式是x[i]-x[j]<=x
所以是求最短路,不能使用dj,因为存在负权
推荐使用spfa
code:
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 9999999999
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 1005
struct node
{
int v;
LL w;
node(int vv=,LL ww=):v(vv),w(ww) {}
};
struct node1
{
int id,v;
}p[max_v];
bool cmp(node1 a,node1 b)
{
return a.v<b.v;
}
LL dis[max_v];
int vis[max_v];
int cnt[max_v];
vector<node> G[max_v];
queue<int> q; void init()
{
for(int i=; i<max_v; i++)
{
G[i].clear();
dis[i]=INF;
vis[i]=;
cnt[i]=;
}
while(!q.empty())
q.pop();
} int spfa(int s,int n)
{
vis[s]=;
dis[s]=;
q.push(s);
cnt[s]++; while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=; for(int j=; j<G[u].size(); j++)
{
int v=G[u][j].v;
LL w=G[u][j].w; if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==)
{
q.push(v);
cnt[v]++;
vis[v]=; if(cnt[v]>n)
return ;
}
}
}
}
return ;
}
int f(int u,int v)
{
for(int j=; j<G[u].size(); j++)
{
if(G[u][j].v==v)
return ;
}
return ;
}
int main()
{
int t,ca=;
scanf("%d",&t);
while(t--)
{
int n,d;
scanf("%d %d",&n,&d);
for(int i=;i<=n;i++)
{
scanf("%d",&p[i].v);
p[i].id=i;
}
sort(p+,p++n,cmp);
init();
int x,y;
for(int i=;i<=n-;i++)
{
x=p[i].id;
y=p[i+].id;
int u=max(x,y);
int v=min(x,y);
if(f(v,u))
G[v].push_back(node(u,d));
}
for(int i=;i<=n;i++)
{
if(f(i,i-))
G[i].push_back(node(i-,-));
}
int s=min(p[n].id,p[].id);//!!!高的房子不一定编号大,低的房子不一定编号小,因为x[i]-x[j]<=x,要求i>j 请注意
int e=max(p[n].id,p[].id);
int flag=spfa(s,n);
printf("Case %d: ",ca++);
if(flag==)
{
printf("-1\n");
}else
{
printf("%lld\n",dis[e]);
}
}
return ;
} /*
题目意思:
n个房子,线性一维排列,房子有高度,房子不能在同一个位置,现在有一个超人,从最低的房子开始跳,
每次跳的房子的高度要求比上一个房子的高度高,每个房子都要跳,最后要停在最高的房子上
你可以随意改变任意房子之间的距离,但是不能改变房子的相对位置
每次超人最多跳D远,问你超人跳完之后
最低的房子和最高的房子之间的距离最大可以是多少? 分析:
每次要求跳的高度递增且要是最高的房子结束
说明跳的房子的顺序已经排列好了
给线性一维上的房子编个号,1到n
按照高度升序排序,得到的编号顺序就是跳的顺序 假设x[i]:表示房子i的位置
x[i]-x[j]表示房子i和j之间的距离,i>j
比如样例1
高度:20 30 10 40
编号:1 2 3 4
按照高度升序排序之后,跳的顺序为:3 1 2 4
对每次跳:
x[3]-x[1]<=d
x[2]-x[1]<=d
x[4]-x[2]<=d
注意每次都是编号大的房子位置减去编号小的房子位置,这样才能得到两者间的距离 隐藏关系:同一个位置不能有两个房子
则:x[i]-x[i-1]>=1,i属于2到n
变形一下:x[i-1]-x[i]<=-1
现在所有的约束关系是都是这个形式:x[i]-x[j]<=x
开始建图,j->i 权值为x
比如上面的样例:
1->3 权值4
11->2 权值4
2->4 权值4
2->1 权值-1
3->2 权值-1
题目要求是从最低的房子到最高的房子的最大距离
注意:是最高房子和最低房子中编号小的房子出发,做起点
最高房子和最低房子中编号大的房子结束,做终点
因为高的房子编号不一定大,低的房子编号不一定小
然后因为表达式是x[i]-x[j]<=x
所以是求最短路,不能使用dj,因为存在负权
推荐使用spfa */

HDU 3440 House Man(编号排序+线性差分约束跑最短路)的更多相关文章

  1. 【Nowcoder71E】组一组(差分约束,最短路)

    [Nowcoder71E]组一组(差分约束,最短路) 题面 Nowcoder 题解 看到二进制显然就直接拆位,那么区间的按位或和按位与转成前缀和之后,可以写成两个前缀和的值的差的大小关系,那么直接差分 ...

  2. 【拓扑排序或差分约束】Guess UVALive - 4255

    题目链接:https://cn.vjudge.net/contest/209473#problem/B 题目大意:对于n个数字,给出sum[j]-sum[i](sum表示前缀和)的符号(正负零),求一 ...

  3. POJ 3159 Candies(差分约束,最短路)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 20067   Accepted: 5293 Descrip ...

  4. HDU 3592 World Exhibition(线性差分约束,spfa跑最短路+判断负环)

    World Exhibition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  6. hdu 4598 Difference(奇圈判定+差分约束)

    这是通化邀请赛的题,当时比赛的时候还完全没想法呢,看来这几个月的训练还是有效果的... 题意要求(1) |ai| < T for all i   (2) (vi, vj) in E <=& ...

  7. poj 1364 King(线性差分约束+超级源点+spfa判负环)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14791   Accepted: 5226 Description ...

  8. poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15349   Accepted: 7379 Descripti ...

  9. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

随机推荐

  1. linux vim 行缩进,批量移动多行

    显示行号用::set nu :49>5  从第49行开始,连接5行右移一个tab. :49,93>   从第49行开始到93行右移一个tab 选中多行,然后移动 https://jingy ...

  2. SpringMVC—Struts2拦截器学习网址整理

    引自:http://blog.csdn.net/wp1603710463/article/details/49982683 SpringMVC—Struts2拦截器学习网址整理 最近项目中遇到权限相关 ...

  3. Linux下安装VSCode

    进行下载 64位的包:地址: https://code.visualstudio.com/docs/?dv=linux64&build=insiders 1.解压: tar -zxvf cod ...

  4. 初探性能优化——2个月到4小时的性能提升(copy)推荐阅读

    一直不知道性能优化都要做些什么,从哪方面思考,直到最近接手了一个公司的小项目,可谓麻雀虽小五脏俱全.让我这个编程小白学到了很多性能优化的知识,或者说一些思考方式.真的感受到任何一点效率的损失放大一定倍 ...

  5. UWP开发细节记录:WRL::ComPtr 的坑

    WRL::ComPtr 取原始指针的地址有两种方式: operator&()   先释放原指针再取地址 GetAddressOf() 直接得到原始指针的地址 显然,operator& ...

  6. 【SPL标准库专题(10)】SPL Exceptions

    嵌套异常 了解SPL异常之前,我们先了解一下嵌套异常.嵌套异常顾名思义就是异常里面再嵌套异常,一个异常抛出,在catch到以后再抛出异常,这时可以通过Exception基类的getPrevious方法 ...

  7. python类的内置方法

    1,__init__(self) 初始化方法,实例化一个对象的时候就会被执行 2,__call__(self,*args) 把实例对象作为函数调用,即实例化一个对象后,在对象后面加括号即可调用__ca ...

  8. 为 Azure Resource Manager 中的虚拟机设置 WinRM 访问权限

    Azure 服务管理中的 WinRM 与 Azure Resource Manager Note Azure 具有用于创建和处理资源的两个不同的部署模型:Resource Manager 和经典. 本 ...

  9. Azure 中的 Windows 虚拟机概述

    Azure 虚拟机 (VM) 是 Azure 提供的多种可缩放按需分配计算资源之一. 通常情况下,如果需要以更大的力度(相对于其他控制选项)控制计算环境,则应选择 VM. 本文介绍创建 VM 之前的注 ...

  10. RHEL7.3安装mysql5.7

    RHEL7.3 install mysql5.7 CentOS7默认安装MariaDB而不是MySQL,而且yum服务器上也移除了MySQL相关的软件包.因为MariaDB和MySQL可能会冲突,需先 ...