A. Purification
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are an adventurer currently journeying inside an evil temple. After defeating a couple of weak zombies, you arrived at a square room consisting of tiles forming an n × n grid. The rows are numbered 1 through n from top to bottom, and the columns are numbered 1through n from left to right. At the far side of the room lies a door locked with evil magical forces. The following inscriptions are written on the door:

The cleaning of all evil will awaken the door!

Being a very senior adventurer, you immediately realize what this means. You notice that every single cell in the grid are initially evil. You should purify all of these cells.

The only method of tile purification known to you is by casting the "Purification" spell. You cast this spell on a single tile — then, all cells that are located in the same row and all cells that are located in the same column as the selected tile become purified (including the selected tile)! It is allowed to purify a cell more than once.

You would like to purify all n × n cells while minimizing the number of times you cast the "Purification" spell. This sounds very easy, but you just noticed that some tiles are particularly more evil than the other tiles. You cannot cast the "Purification" spell on those particularly more evil tiles, not even after they have been purified. They can still be purified if a cell sharing the same row or the same column gets selected by the "Purification" spell.

Please find some way to purify all the cells with the minimum number of spells cast. Print -1 if there is no such way.

Input

The first line will contain a single integer n (1 ≤ n ≤ 100). Then, n lines follows, each contains n characters. The j-th character in the i-th row represents the cell located at row i and column j. It will be the character 'E' if it is a particularly more evil cell, and '.' otherwise.

Output

If there exists no way to purify all the cells, output -1. Otherwise, if your solution casts x "Purification" spells (where x is the minimum possible number of spells), output x lines. Each line should consist of two integers denoting the row and column numbers of the cell on which you should cast the "Purification" spell.

Sample test(s)
input
3
.E.
E.E
.E.
output
1 1
2 2
3 3
input
3
EEE
E..
E.E
output
-1
input
5
EE.EE
E.EE.
E...E
.EE.E
EE.EE
output
3 3
1 3
2 2
4 4
5 3
Note

The first example is illustrated as follows. Purple tiles are evil tiles that have not yet been purified. Red tile is the tile on which "Purification" is cast. Yellow tiles are the tiles being purified as a result of the current "Purification" spell. Green tiles are tiles that have been purified previously.

In the second example, it is impossible to purify the cell located at row 1 and column 1.

For the third example:

这题是NOI 2013 被虐残以后 做的第一次Div 1,马上就掉回了轻囧

这题一开始以为DLX各种弱。。。。。

印度尼西亚的人怎么都出这种游戏题目、、、、

进入正解模式:

我们发现出现‘十‘E 是无解的

否则必然存在n次Purification(净化)的解.

反证:

假设最优解为n+1

那么必然有一行/一列净化了2次,删掉那次不影响结果

假设存在答案为n的净化方案:

因为只做了n遍,必然每行取一个(%号表示净化点)

%E

%E

或每列:

%%

EE

所以考虑这2种情况,随便取即可,反之无解

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000+10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,a[MAXN]={0},d[MAXN]={0};
bool b[MAXN][MAXN]={0};
int main()
{
// freopen("Purification.in","r",stdin);
cin>>n;
For(i,n) For(j,n)
{
char c;
while (cin>>c)
{
if (c=='.') b[i][j]=1,a[i]=j,d[j]=i;
else if (c=='E') b[i][j]=0;
else continue;
break;
}
}
/*
For(i,n)
{
bool bo=0;
For(j,n) if (b[i][j]) bo=1;
if (!bo) {puts("-1");return 0;}
bo=0;
For(j,n) if (b[j][i]) bo=1;
if (!bo) {puts("-1");return 0;}
}*/
//For(i,n) cout<<a[i]<<' ';cout<<endl;
//For(i,n) cout<<d[i]<<' ';cout<<endl; bool bo=0;
For(i,n) if (!a[i]) bo=1;
if (!bo)
{
For(i,n) cout<<i<<' '<<a[i]<<endl;
return 0;
} bo=0;
For(i,n) if (!d[i]) bo=1;
if (!bo)
{
For(i,n) cout<<d[i]<<' '<<i<<endl;
return 0;
} puts("-1"); return 0;
}

CF 329A(Purification-贪心-非DLX)的更多相关文章

  1. Codeforces Round #192 (Div. 1) A. Purification 贪心

    A. Purification Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/329/probl ...

  2. CF 949D Curfew——贪心(思路!!!)

    题目:http://codeforces.com/contest/949/problem/D 有二分答案的思路. 如果二分了一个答案,首先可知越靠中间的应该大约越容易满足,因为方便把别的房间的人聚集过 ...

  3. CF Covered Path (贪心)

    Covered Path time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  4. CF 389 E 贪心(第一次遇到这么水的E)

    http://codeforces.com/contest/389/problem/E 这道题目刚开始想的特别麻烦...但是没想到竟然是贪心 我们只需要知道偶数的时候可以对称取的,然后奇数的时候没次取 ...

  5. CF 463A && 463B 贪心 && 463C 霍夫曼树 && 463D 树形dp && 463E 线段树

    http://codeforces.com/contest/462 A:Appleman and Easy Task 要求是否全部的字符都挨着偶数个'o' #include <cstdio> ...

  6. cf 之lis+贪心+思维+并查集

    https://codeforces.com/contest/1257/problem/E 题意:有三个集合集合里面的数字可以随意变换位置,不同集合的数字,如从第一个A集合取一个数字到B集合那操作数+ ...

  7. cf C. Purification

    http://codeforces.com/contest/330/problem/C 这道题分三种情况.有一行全是E,有一列全是E,还有一种为无解的情况. #include <cstdio&g ...

  8. CF# 260 A. Laptops

    One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the m ...

  9. Codeforces Round #401 (Div. 2) 离翻身就差2分钟

    Codeforces Round #401 (Div. 2) 很happy,现场榜很happy,完全将昨晚的不悦忘了.终判我校一片惨白,小董同学怒怼D\E,离AK就差一个C了,于是我AC了C题还剩35 ...

随机推荐

  1. c#double类型保留百分号后两位,且禁止四舍五入的方法

    double percent = Convert.ToDouble(50002.3) / Convert.ToDouble(50002.5) - 0.00005; string result = pe ...

  2. JavaWeb中Tomcat与Eclipse的集成—步骤详解

    前面会简单介绍,下翻Tomcat与Eclipse的集成 一.先介绍一下应用程序的结构: 1.到目前为止应用程序物理结构有两种: C/S——Client / server:这种结构的应用,客户端与服务端 ...

  3. PMK数据生成工具airolib-ng

    PMK数据生成工具airolib-ng   PMK(Pairwise Master Key)是根据ESSID和无线密钥生成的哈希值,用于WPA/WPA2身份认证.在WPA/WPA2暴力破解中,需要大量 ...

  4. Web服务器指纹识别工具httprint

    Web服务器指纹识别工具httprint   在Web渗透测试中,准确判断服务器的类型直接影响后期渗透测试的成功率.Kali Linux提供了专门的Web服务器指纹识别工具Httprint.该工具根据 ...

  5. Ubuntu 18.04 更新源

    [原因] 使用国外的源,在更新软件的时候会很慢,换成国内的源会快很多. [命令] 1.备份源文件 sudo cp /etc/apt/sources.list /etc/apt/sources.list ...

  6. Codeforces Round #281 (Div. 2) A. Vasya and Football 模拟

    A. Vasya and Football 题目连接: http://codeforces.com/contest/493/problem/A Description Vasya has starte ...

  7. hdu 5821 Ball 贪心

    Ball 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5821 Description ZZX has a sequence of boxes nu ...

  8. hdu 5774 Where Amazing Happens 水题

    Where Amazing Happens 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5774 Description As the premie ...

  9. 深入理解webpack

    什么是Webpack WebPack可以看做是模块打包机:它做的事情是,分析你的项目结构,找到JavaScript模块以及其它的一些浏览器不能直接运行的拓展语言(Scss,TypeScript等),并 ...

  10. Fiddler_解决Fiddler查看Post参数中文乱码的问题

    解决Fiddler查看Post参数中文乱码的问题 今天一个同事问我,为什么用Fiddler查看Post的中文参数,是一堆乱码,如下: 需要在注册表中增加一个键值: HKEY_CURRENT_USER\ ...