A. Purification
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are an adventurer currently journeying inside an evil temple. After defeating a couple of weak zombies, you arrived at a square room consisting of tiles forming an n × n grid. The rows are numbered 1 through n from top to bottom, and the columns are numbered 1through n from left to right. At the far side of the room lies a door locked with evil magical forces. The following inscriptions are written on the door:

The cleaning of all evil will awaken the door!

Being a very senior adventurer, you immediately realize what this means. You notice that every single cell in the grid are initially evil. You should purify all of these cells.

The only method of tile purification known to you is by casting the "Purification" spell. You cast this spell on a single tile — then, all cells that are located in the same row and all cells that are located in the same column as the selected tile become purified (including the selected tile)! It is allowed to purify a cell more than once.

You would like to purify all n × n cells while minimizing the number of times you cast the "Purification" spell. This sounds very easy, but you just noticed that some tiles are particularly more evil than the other tiles. You cannot cast the "Purification" spell on those particularly more evil tiles, not even after they have been purified. They can still be purified if a cell sharing the same row or the same column gets selected by the "Purification" spell.

Please find some way to purify all the cells with the minimum number of spells cast. Print -1 if there is no such way.

Input

The first line will contain a single integer n (1 ≤ n ≤ 100). Then, n lines follows, each contains n characters. The j-th character in the i-th row represents the cell located at row i and column j. It will be the character 'E' if it is a particularly more evil cell, and '.' otherwise.

Output

If there exists no way to purify all the cells, output -1. Otherwise, if your solution casts x "Purification" spells (where x is the minimum possible number of spells), output x lines. Each line should consist of two integers denoting the row and column numbers of the cell on which you should cast the "Purification" spell.

Sample test(s)
input
3
.E.
E.E
.E.
output
1 1
2 2
3 3
input
3
EEE
E..
E.E
output
-1
input
5
EE.EE
E.EE.
E...E
.EE.E
EE.EE
output
3 3
1 3
2 2
4 4
5 3
Note

The first example is illustrated as follows. Purple tiles are evil tiles that have not yet been purified. Red tile is the tile on which "Purification" is cast. Yellow tiles are the tiles being purified as a result of the current "Purification" spell. Green tiles are tiles that have been purified previously.

In the second example, it is impossible to purify the cell located at row 1 and column 1.

For the third example:

这题是NOI 2013 被虐残以后 做的第一次Div 1,马上就掉回了轻囧

这题一开始以为DLX各种弱。。。。。

印度尼西亚的人怎么都出这种游戏题目、、、、

进入正解模式:

我们发现出现‘十‘E 是无解的

否则必然存在n次Purification(净化)的解.

反证:

假设最优解为n+1

那么必然有一行/一列净化了2次,删掉那次不影响结果

假设存在答案为n的净化方案:

因为只做了n遍,必然每行取一个(%号表示净化点)

%E

%E

或每列:

%%

EE

所以考虑这2种情况,随便取即可,反之无解

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000+10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,a[MAXN]={0},d[MAXN]={0};
bool b[MAXN][MAXN]={0};
int main()
{
// freopen("Purification.in","r",stdin);
cin>>n;
For(i,n) For(j,n)
{
char c;
while (cin>>c)
{
if (c=='.') b[i][j]=1,a[i]=j,d[j]=i;
else if (c=='E') b[i][j]=0;
else continue;
break;
}
}
/*
For(i,n)
{
bool bo=0;
For(j,n) if (b[i][j]) bo=1;
if (!bo) {puts("-1");return 0;}
bo=0;
For(j,n) if (b[j][i]) bo=1;
if (!bo) {puts("-1");return 0;}
}*/
//For(i,n) cout<<a[i]<<' ';cout<<endl;
//For(i,n) cout<<d[i]<<' ';cout<<endl; bool bo=0;
For(i,n) if (!a[i]) bo=1;
if (!bo)
{
For(i,n) cout<<i<<' '<<a[i]<<endl;
return 0;
} bo=0;
For(i,n) if (!d[i]) bo=1;
if (!bo)
{
For(i,n) cout<<d[i]<<' '<<i<<endl;
return 0;
} puts("-1"); return 0;
}

CF 329A(Purification-贪心-非DLX)的更多相关文章

  1. Codeforces Round #192 (Div. 1) A. Purification 贪心

    A. Purification Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/329/probl ...

  2. CF 949D Curfew——贪心(思路!!!)

    题目:http://codeforces.com/contest/949/problem/D 有二分答案的思路. 如果二分了一个答案,首先可知越靠中间的应该大约越容易满足,因为方便把别的房间的人聚集过 ...

  3. CF Covered Path (贪心)

    Covered Path time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  4. CF 389 E 贪心(第一次遇到这么水的E)

    http://codeforces.com/contest/389/problem/E 这道题目刚开始想的特别麻烦...但是没想到竟然是贪心 我们只需要知道偶数的时候可以对称取的,然后奇数的时候没次取 ...

  5. CF 463A && 463B 贪心 && 463C 霍夫曼树 && 463D 树形dp && 463E 线段树

    http://codeforces.com/contest/462 A:Appleman and Easy Task 要求是否全部的字符都挨着偶数个'o' #include <cstdio> ...

  6. cf 之lis+贪心+思维+并查集

    https://codeforces.com/contest/1257/problem/E 题意:有三个集合集合里面的数字可以随意变换位置,不同集合的数字,如从第一个A集合取一个数字到B集合那操作数+ ...

  7. cf C. Purification

    http://codeforces.com/contest/330/problem/C 这道题分三种情况.有一行全是E,有一列全是E,还有一种为无解的情况. #include <cstdio&g ...

  8. CF# 260 A. Laptops

    One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the m ...

  9. Codeforces Round #401 (Div. 2) 离翻身就差2分钟

    Codeforces Round #401 (Div. 2) 很happy,现场榜很happy,完全将昨晚的不悦忘了.终判我校一片惨白,小董同学怒怼D\E,离AK就差一个C了,于是我AC了C题还剩35 ...

随机推荐

  1. WEP/WPA-PSK密码破解工具aircrack-ng

    WEP/WPA-PSK密码破解工具aircrack-ng   aircrack-ng是Aircrack-ng工具集中的一个工具.该工具主要用于根据已经抓取的.cap文件或者.ivs文件破解出WEP/W ...

  2. HDU.5819.Knights(概率DP)

    题目链接 参考一下这的. \(Description\) 数轴上有n个骑士,分别位于1,2,3,...,n,它们的移动速度相同,初始移动方向已知.当两个骑士相遇时,各有50%的概率获胜,失败的骑士就死 ...

  3. MAC下安装Homebrew 和 @权限的问题

    MAC下安装Homebrew和 @权限的问题 1.Homebrew简介: Homebrew是一个包管理器,用于安装Apple没有预装但你需要的UNIX工具.(比如著名的wget). Homebrew会 ...

  4. 玩转ptrace(转)

    下面是转帖的内容,写的很详细.但是不同的linux发行版中头文件的路径和名称并不相同.如在某些发行版中<linux/user.h>就不存在,其中定义的变量出现在<asm/ptrace ...

  5. Message Queue协议AMQP

    历史: Message Queue的需求由来已久,80年代最早在金融交易中,高盛等公司采用Teknekron公司的产品,当时的Message queuing软件叫做:the information b ...

  6. Data transfer from GPIO port to RAM buffer using DMA upon receiving a trigger signal on the timer capture input channel.

    Data transfer from GPIO port to RAM buffer using DMA upon receiving a trigger signal on the timer ca ...

  7. 【Go命令教程】4. go get

    hc@ubt:~$ go get github.com/hyper-carrot/go_lib/logging 命令 go get 可以根据要求和实际情况从互联网上下载或更新指定的代码包及其依赖包,并 ...

  8. SQL 版本说明

    http://www.cnblogs.com/SameZhao/p/6184924.html The ProductMajorVersion产品主版本号 如: 12为 SQL SERVER 2014 ...

  9. Win10正式版开机慢怎么办 开机黑屏时间长怎么办

    升级Win10正式版后开机速度慢.黑屏时间长怎么解决呢?其实我重要是由Win10正式版所提供的“快速启动”功能与电脑显卡驱动.电源管理驱动不兼容所造成的.下面就与大家分享一下针对Win10正式版开机速 ...

  10. MySQL查询报错 ERROR: No query specified

    今天1网友,查询报错ERROR: No query specified,随后它发来截图. root case:查询语法错误 \G后面不能再加分号;,由于\G在功能上等同于;,假设加了分号,那么就是;; ...