[转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()
Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()
觉得有用的话,欢迎一起讨论相互学习~Follow Me
numpy.stack()函数
- 函数原型:numpy.stack(arrays, axis=0)
程序实例:
>>> arrays = [np.random.randn(3, 4) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)
>>>
>>> np.stack(arrays, axis=1).shape
(3, 10, 4)
>>>
>>> np.stack(arrays, axis=2).shape
(3, 4, 10)
>>>
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],
[2, 3, 4]])
>>>
>>> np.stack((a, b), axis=-1)
array([[1, 2],
[2, 3],
[3, 4]])
numpy.hstack()函数
函数原型:numpy.hstack(tup)
其中tup是arrays序列,The arrays must have the same shape, except in the dimensioncorresponding to axis (the first, by default).
等价于:np.concatenate(tup, axis=1)
程序实例:
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
numpy.vstack()函数
函数原型:numpy.vstack(tup)
等价于:np.concatenate(tup, axis=0) if tup contains arrays thatare at least 2-dimensional.
程序实例:
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>>
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])
numpy.dstack()函数
函数原型:numpy.dstack(tup)
等价于:np.concatenate(tup, axis=2)
程序实例:
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>>
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
[[2, 3]],
[[3, 4]]])
numpy.concatenate()函数
- 函数原型:numpy.concatenate((a1, a2, ...), axis=0)
程序实例:
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
[3, 4],
[5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
[3, 4, 6]])
This function will not preserve masking of MaskedArray inputs.
>>>
>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
mask = [False True False],
fill_value = 999999)
>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],
mask = False,
fill_value = 999999)
>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
mask = [False True False False False False],
fill_value = 999999)
numpy.vsplit()函数
- 函数原型:numpy.vsplit(ary, indices_or_sections)
程序实例:
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])
>>> np.vsplit(x, 2)
[array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.]]),
array([[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]),
array([[ 12., 13., 14., 15.]]),
array([], dtype=float64)]
With a higher dimensional array the split is still along the first axis.
>>>
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[ 0., 1.],
[ 2., 3.]],
[[ 4., 5.],
[ 6., 7.]]])
>>> np.vsplit(x, 2)
[array([[[ 0., 1.],
[ 2., 3.]]]),
array([[[ 4., 5.],
[ 6., 7.]]])]
[转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()的更多相关文章
- Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()
感觉numpy.hstack()和numpy.column_stack()函数略有相似,numpy.vstack()与numpy.row_stack()函数也是挺像的. stackoverflow上也 ...
- numpy函数hstack,vstack,dstack简介
vstack.hstack和dstack都用于把几个小数组合并成一个大数组.它们的差别是小数组的元素在大数组中的排列顺序有所不同.把两部手机摆到一起有几种方式?水平的左右排列,垂直的上下排列,还可以把 ...
- Python numpy函数:reshape()
reshape()函数用于改变数组对象的形状: import numpy as np a = np.array([1,2,3,4,5,6,7,8]) #转换成2D数组 b = a.reshape((2 ...
- Python numpy函数:transpose()
transpose用于对高维数组进行转置,转置时候需要一个由轴编号组成的元组. 比如说三维的数组,那就对维度进行编号,也就是0,1,2:这样说可能比较抽象.这里的0,1,2可以理解为对shape返回元 ...
- numpy函数查询手册
写了个程序,对Numpy的绝大部分函数及其说明进行了中文翻译. 原网址:https://docs.scipy.org/doc/numpy/reference/routines.html#routine ...
- Python NumPy学习总结
一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...
- Python numpy中矩阵的用法总结
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...
- CS231n课程笔记翻译1:Python Numpy教程
译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...
- python的函数
函数一词起源于数学,但是在编程中的函数和数学中的有很大不同.编程中的函数式组织好的,可重复使用的,用于实现单一功能或相关联功能的代码块. 我们在学习过程中已经使用过一些python内建的函数,如pri ...
随机推荐
- SQLServer数据库还原:无法在已有的mdf文件上还原文件
如果提示无法在已有的mdf文件上还原文件,请修改如下位置
- 微信小程序实现各种特效实例
写在前面 最近在负责一个微信小程序的前端以及前后端接口的对接的项目,整体上所有页面的布局我都已经搭建完成,里面有一些常用的特效,总结一下,希望对大家和我都能有所帮助 实例1:滚动tab选项卡 先看一下 ...
- flask_admin 笔记三 客户化视图
客户化视图1, model数据模型参数配置1)配置全局参数内置的ModelView类很适合快速入门. 但是,您需要配置其功能以适合您的特定型号. 这是通过设置ModelView类中提供的配置属性的值来 ...
- pandas 初识(三)
Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...
- Python_xlutils.copy
import xlrd import xlwt from xlutils.copy import copy # 读取工作簿 objWB = xlrd.open_workbook(r'C:\Users\ ...
- Hyperledger Fabric网络节点架构
Fabric区块链网络的组成  区块链网络结构图 区块链网络组成 组成区块链网络相关的节点 节点是区块链的通信主体,和区块链网络相关的节点有多种类型:客户端(应用).Peer节点.排序服务(Orde ...
- bugkuct部分writeup 持续更新
6307 校赛被打击到自闭,决心好好学习. web部分题目. 1.web2 地址 http://123.206.87.240:8002/web2/ 既然是第一个题我们应该采取查看源码的方式进行,右键之 ...
- win2003无线网卡驱动无法安装解决方法
Windows 2003 Server对无线网卡的pci资源分配出了问题,而笔记本bios中屏蔽了pci配置项,无法修改. 打开资源管理器菜单,工具-文件夹选项-显示,去掉“隐藏受保护的操作系统文件” ...
- PHP学习 类型 变量 常数 运算符
PHP支持下列8种类型 标量类型 scalar type整数 integer浮点数 float double布尔 boolean字符串 string 特殊类型 special typeNULL资源 r ...
- LeetCode 633. Sum of Square Numbers平方数之和 (C++)
题目: Given a non-negative integer c, your task is to decide whether there're two integers a and b suc ...