Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

觉得有用的话,欢迎一起讨论相互学习~Follow Me

转载链接

numpy.stack()函数

  • 函数原型:numpy.stack(arrays, axis=0)

程序实例:

>>> arrays = [np.random.randn(3, 4) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4) >>> >>> np.stack(arrays, axis=1).shape
(3, 10, 4) >>> >>> np.stack(arrays, axis=2).shape
(3, 4, 10) >>> >>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],
[2, 3, 4]]) >>> >>> np.stack((a, b), axis=-1)
array([[1, 2],
[2, 3],
[3, 4]])

numpy.hstack()函数

  • 函数原型:numpy.hstack(tup)

  • 其中tup是arrays序列,The arrays must have the same shape, except in the dimensioncorresponding to axis (the first, by default).

  • 等价于:np.concatenate(tup, axis=1)

程序实例:

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])

numpy.vstack()函数

  • 函数原型:numpy.vstack(tup)

  • 等价于:np.concatenate(tup, axis=0) if tup contains arrays thatare at least 2-dimensional.

程序实例:

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]]) >>> >>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])

numpy.dstack()函数

  • 函数原型:numpy.dstack(tup)

  • 等价于:np.concatenate(tup, axis=2)

程序实例:

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]]) >>> >>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
[[2, 3]],
[[3, 4]]])

numpy.concatenate()函数

  • 函数原型:numpy.concatenate((a1, a2, ...), axis=0)

程序实例:

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
[3, 4],
[5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
[3, 4, 6]]) This function will not preserve masking of MaskedArray inputs.
>>> >>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
mask = [False True False],
fill_value = 999999)
>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],
mask = False,
fill_value = 999999)
>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
mask = [False True False False False False],
fill_value = 999999)

numpy.vsplit()函数

  • 函数原型:numpy.vsplit(ary, indices_or_sections)

程序实例:

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])
>>> np.vsplit(x, 2)
[array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.]]),
array([[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]),
array([[ 12., 13., 14., 15.]]),
array([], dtype=float64)] With a higher dimensional array the split is still along the first axis.
>>> >>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[ 0., 1.],
[ 2., 3.]],
[[ 4., 5.],
[ 6., 7.]]])
>>> np.vsplit(x, 2)
[array([[[ 0., 1.],
[ 2., 3.]]]),
array([[[ 4., 5.],
[ 6., 7.]]])]

[转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()的更多相关文章

  1. Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    感觉numpy.hstack()和numpy.column_stack()函数略有相似,numpy.vstack()与numpy.row_stack()函数也是挺像的. stackoverflow上也 ...

  2. numpy函数hstack,vstack,dstack简介

    vstack.hstack和dstack都用于把几个小数组合并成一个大数组.它们的差别是小数组的元素在大数组中的排列顺序有所不同.把两部手机摆到一起有几种方式?水平的左右排列,垂直的上下排列,还可以把 ...

  3. Python numpy函数:reshape()

    reshape()函数用于改变数组对象的形状: import numpy as np a = np.array([1,2,3,4,5,6,7,8]) #转换成2D数组 b = a.reshape((2 ...

  4. Python numpy函数:transpose()

    transpose用于对高维数组进行转置,转置时候需要一个由轴编号组成的元组. 比如说三维的数组,那就对维度进行编号,也就是0,1,2:这样说可能比较抽象.这里的0,1,2可以理解为对shape返回元 ...

  5. numpy函数查询手册

    写了个程序,对Numpy的绝大部分函数及其说明进行了中文翻译. 原网址:https://docs.scipy.org/doc/numpy/reference/routines.html#routine ...

  6. Python NumPy学习总结

    一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...

  7. Python numpy中矩阵的用法总结

    关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...

  8. CS231n课程笔记翻译1:Python Numpy教程

    译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...

  9. python的函数

    函数一词起源于数学,但是在编程中的函数和数学中的有很大不同.编程中的函数式组织好的,可重复使用的,用于实现单一功能或相关联功能的代码块. 我们在学习过程中已经使用过一些python内建的函数,如pri ...

随机推荐

  1. Elasticsearch Java Rest Client API 整理总结 (二) —— SearchAPI

    目录 引言 Search APIs Search API Search Request 可选参数 使用 SearchSourceBuilder 构建查询条件 指定排序 高亮请求 聚合请求 建议请求 R ...

  2. 拥抱函数式编程 I - 基本概念

    函数编程与命令性编程 为支持使用纯函数方法解决问题,特此创建了函数编程范例. 函数编程是一种声明性编程形式.相比之下,大多数主流语言,包括面向对象的编程 (OOP) 语言(如 C#.Visual Ba ...

  3. 一个Python开源项目-腾讯哈勃沙箱源码剖析(上)

    前言 2019年来了,2020年还会远吗? 请把下一年的年终奖发一下,谢谢... 回顾逝去的2018年,最大的改变是从一名学生变成了一位工作者,不敢说自己多么的职业化,但是正在努力往那个方向走. 以前 ...

  4. 安装Ubuntu后要做的事

    优化 删除libreoffice sudo apt-get remove libreoffice-common 删除Amazon sudo apt-get remove unity-webapps-c ...

  5. 在Ubuntu虚拟机上安装DVWA

    学习资料来源:https://www.neddos.tech/?p=107 最后更新时间: 190122·17:41 1> 什么是DVWA(Damn Vulnerable Web Applica ...

  6. Book Review 《构建之法》

    -首先浏览了一遍<构建之法>这本书的前言,其中通过客观的描述性介绍了学生与学习.老师与教学.以及学习的环境.方法等等.但是对于书中前言包括正文都频繁出现的一个词语 “文档” 深表疑问.何为 ...

  7. Web项目--------原Oracle数据库的项目同时兼容MySql

    原Oracle数据库的项目同时兼容MySql步骤: (一)修改资源配置文件applicationContext-dataSource.xml的数据库连接 Oracle数据库中加上from dual的原 ...

  8. ns3的输入输出奥秘(二) 命令行参数

    命令行参数 (1) UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9); echoClient.SetAttribute (&q ...

  9. 关于vs2013进行单元测试

    安装vs的过程就不多说了,做为一个学计算机的学生十基本技能. 第一步建立新工程.使用c#语言, 第二步,建立一个类.输入要测试的代码 第三步 建立一个类 第四步  运行测试

  10. 第四次WBS

    分解原则 1.将主体目标逐步细化分解,最底层的日常活动可直接分派到个人去完成: 2.每个任务原则上要求分解到不能再细分为止: 3.日常活动要对应到人.时间和资金投入. 二.任务分解的方法 1.采用树状 ...