洛谷P3389 【模板】高斯消元法(+判断是否唯一解)
https://www.luogu.org/problemnew/show/P3389
这里主要说说怎么判断不存在唯一解
我们把每一行的第一个非零元称为关键元
枚举到一个变量,如果剩下的行中该变量的系数都是0,那么这个元素就是一个自由元
若方程组有唯一解,第i行的关键元是第i个
否则,一定至少存在某一行i,它的关键元是第j个(j>i)
具体实现:
假设当前枚举到第i行,我们会把第i行之后的 第i列元素最大的那一行 交换到第i行
只需要换完之后加一个判断:if(fabs(a[r][i])<eps) 即可
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 101
const double eps=1e-;
int n;
double a[N][N];
void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
}
bool Gauss()
{
int r;
double f;
for(int i=;i<n;++i)
{
r=i;
for(int j=i+;j<n;++j)
if(fabs(a[j][i])>fabs(a[r][i])) r=j;
if(fabs(a[r][i])<eps) return false;
if(r!=i)
for(int j=;j<=n;++j) swap(a[r][j],a[i][j]);
for(int k=i+;k<n;++k)
{
f=a[k][i]/a[i][i];
for(int j=i;j<=n;++j) a[k][j]-=f*a[i][j];
}
}
for(int i=n-;i>=;--i)
{
for(int j=i+;j<n;++j) a[i][n]-=a[j][n]*a[i][j];
a[i][n]/=a[i][i];
}
return true;
}
int main()
{
int x;
read(n);
for(int i=;i<n;++i)
for(int j=;j<=n;++j)
{
read(x);
a[i][j]=x;
}
if(!Gauss()) { puts("No Solution"); return ; }
for(int i=;i<n;++i) printf("%.2lf\n",a[i][n]);
}
洛谷P3389 【模板】高斯消元法(+判断是否唯一解)的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
- [洛谷P3806] [模板] 点分治1
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...
随机推荐
- Sterling B2B Integrator与SAP交互 - 02 安装配置
系统组成: 1. 服务器OS及硬件: OS: Red Hat Enterprise Linux Server release 6.6 Hardware: Virtual Machine, x86_64 ...
- python3解析网页经过base64编码后的图片
有时候我们打开网页看到的图片不是普通的url,例如:www.baidu.com/static/2.jpg,而是经过base64方式加密过的路径:例如:data:img/jpg;base64,/9j/4 ...
- pandas 初识(二)
基本统计 pivot_table(数据透视表 ): 使用appfunc, 按不同index分类统计各特征values的值 df.pivot_table(index="Pclass" ...
- yocto-sumo源码解析(二): oe-buildenv-internal
1 首先,脚本先对运行方式进行了检测: if ! $(return >/dev/null 2>&1) ; then echo 'oe-buildenv-internal: erro ...
- Jenkins报表 代码 指标分析
Jenkins报表 这表现在前面的章节中,也有可用最简单的一种是适用于 JUnit 测试报告的许多报表插件. 在生成后动作进行任何工作,你可以定义要创建的报告. 该构建已经完成,测试结果选项将可进一步 ...
- libimobiledevice --Mingw32交叉编译
本文只描述 windows环境下的使用情况,linux平台基本雷同. 一.配置编译环境. (1)操作系统 :Windows10 (64bit). (2)类unix环境:Cygwin(64bit) 下载 ...
- dp算法之平安果路径问题c++
前文:https://www.cnblogs.com/ljy1227476113/p/9563101.html 在此基础上更新了可以看到行走路径的代码. 代码: #include <iostre ...
- 了不起的Node.js--之五 TCP连接
TCP连接 传输控制协议(TCP)是一个面向连接的协议,它保证了两台计算机之间数据传输的可靠性和顺序. TCP是一种传输层协议,它可以让你将数据从一台计算机完整有序地传输到另一台计算机. Node.j ...
- 审评(HelloWorld团队)
炸弹人:我觉得炸弹人的构想很不错,很像以前玩的qq堂,不过上课时讲的不够深入,我没有找到项目的思路,项目的介绍也很粗糙,后面说的目标很大,希望你可以实现,我觉得越多的功能,就意味着越多的工作量,总的来 ...
- 团队作业之旅游行业APP分析
随着经济的发展,不论是在工作中的男女老少,还是在校园中的童鞋,都喜欢在假期来一场说走就走的旅行,来缓解生活中的各种压力.当然,在国家面临经济转型的情况下,更多的将工业,农业转向服务型的旅游业,各个省市 ...