1.安装mesos

#用centos6的源yum安装

# rpm -Uvh http://repos.mesosphere.io/el/6/noarch/RPMS/mesosphere-el-repo-6-2.noarch.rpm
# yum install mesos -y
注意:如果要运行Mesos而不将其安装到系统的默认路径中(例如,如果您缺乏安装它的管理权限),请传递 --prefix选项configure以告诉它在哪里安装。例如,通过 --prefix=/home/me/mesos。默认情况下,前缀是/usr/local
#wget http://mirror.bit.edu.cn/apache/mesos/1.3.1/mesos-1.3.1.tar.gz 
#tar zxvf mesos-1.3.1.tar.gz 
#cd  mesos-1.3.1
#mkdir build
#cd build
#../configure
#make
#make install

#依赖项

#yum -y install apr-devel  libcurl-devel  apr-util-devel
#yum install subversion
#yum install subversion-javahl
#yum install subversion-devel
#yum install cyrus-sasl-md5
#yum install python-devel

2.升级gcc4.4.7到gcc4.8.0

#wget http://ftp.gnu.org/gnu/gcc/gcc-4.8.0/gcc-4.8.0.tar.bz2

#tar -jxvf  gcc-4.8.0.tar.bz2
#cd gcc-4.8.0

#./contrib/download_prerequisites
#cd ..
#mkdir gcc-build-4.8.0
#cd  gcc-build-4.8.0

#../gcc-4.8.0/configure --enable-checking=release --enable-languages=c,c++ --disable-multilib
# j 后面的是核心数,编译速度会比较快

#make -j4
#sudo make install
#ls /usr/local/bin grep gcc
#update-alternatives --install /usr/bin/gcc gcc /usr/local/bin/i686-pc-linux-gnu-gcc 40
#gcc -v
升级了GCC,生成的动态库没有替换老版本gcc的动态库。
cp /usr/local/lib64/libstdc++.so.6.0.18 /usr/lib64/

rm -f libstdc++.so.6
ln -s libstdc++.so.6.0.18 libstdc++.so.6
strings /usr/lib64/libstdc++.so.6|grep GLIBCXX

3.spark on mesos(http://spark.apache.org/docs/latest/running-on-mesos.html)

在客户端模式下,直接在客户机上启动Spark Mesos框架并等待驱动程序输出。

驱动程序需要一些配置spark-env.sh才能与Mesos正确交互:

  1. spark-env.sh设置一些环境变量:也设置spark.executor.uri<URL of spark-2.2.0.tar.gz>

    • export MESOS_NATIVE_JAVA_LIBRARY=<path to libmesos.so>。这个路径通常 <prefix>/lib/libmesos.so是前缀/usr/local默认的地方。请参阅上面的Mesos安装说明。在Mac OS X上,库被调用libmesos.dylib而不是 libmesos.so
    • export SPARK_EXECUTOR_URI=<URL of spark-2.2.0.tar.gz uploaded above>

集群模式

Mesos上的Spark还支持集群模式,驱动程序在集群中启动,客户端可以从Mesos Web UI中找到驱动程序的结果。

要使用集群模式,您必须MesosClusterDispatcher通过sbin/start-mesos-dispatcher.sh脚本启动集群,传入Mesos主URL(例如:mesos:// host:5050)。这将启动MesosClusterDispatcher在主机上运行的守护进程。

如果你喜欢MesosClusterDispatcher与马拉松运行,你需要运行MesosClusterDispatcher在前台(即:)bin/spark-class org.apache.spark.deploy.mesos.MesosClusterDispatcher。请注意,MesosClusterDispatcher尚不支持HA的多个实例。

MesosClusterDispatcher还支持写入恢复状态到动物园管理员。这将允许MesosClusterDispatcher能够在重新启动时恢复所有提交和正在运行的容器。为了启用这种恢复模式,您可以通过配置spark.deploy.recoveryMode和相关的spark.deploy.zookeeper。*配置来设置spark-env中的SPARK_DAEMON_JAVA_OPTS。有关这些配置的更多信息,请参阅配置文档

从客户端,您可以通过运行spark-submit并指定主URL MesosClusterDispatcher(例如:mesos:// dispatcher:7077)的URL来向Mesos集群提交作业。您可以在Spark集群Web UI上查看驱动程序状态。

例如:

./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master mesos://207.184.161.138:7077 \
--deploy-mode cluster \
--supervise \
--executor-memory 20G \
--total-executor-cores 100 \
http://path/to/examples.jar \
1000

请注意,传递给spark-submit的jar或python文件应该是Mesos从站可访问的URI,因为Spark驱动程序不会自动上传本地jar。

Mesos运行模式

Spark可以在两种模式下运行Mesos:“粗粒度”(默认)和“细粒度”(不推荐)。

粗粒度

在“粗粒度”模式下,每个Spark执行器都作为一个Mesos任务运行。Spark执行程序根据以下配置变量进行大小调整:

  • 执行器内存: spark.executor.memory
  • 执行者核心: spark.executor.cores
  • 执行者的数量:spark.cores.max/spark.executor.cores

有关详细信息和默认值,请参阅Spark Configuration页面。

Spark记录-Spark on mesos配置的更多相关文章

  1. Spark记录-官网学习配置篇(二)

    ### Spark SQL Running the SET -v command will show the entire list of the SQL configuration. #scala/ ...

  2. Spark记录-官网学习配置篇(一)

    参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...

  3. Spark记录-spark编程介绍

    Spark核心编程 Spark 核心是整个项目的基础.它提供了分布式任务调度,调度和基本的 I/O 功能.Spark 使用一种称为RDD(弹性分布式数据集)一个专门的基础数据结构,是整个机器分区数据的 ...

  4. Spark记录-Spark性能优化解决方案

    Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,r ...

  5. Spark记录-Spark On YARN内存分配(转载)

    Spark On YARN内存分配(转载) 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. ...

  6. Spark记录-spark介绍

    Apache Spark是一个集群计算设计的快速计算.它是建立在Hadoop MapReduce之上,它扩展了 MapReduce 模式,有效地使用更多类型的计算,其中包括交互式查询和流处理.这是一个 ...

  7. Spark记录-Spark作业调试

    在本地IDE里直接运行spark程序操作远程集群 一般运行spark作业的方式有两种: 本机调试,通过设置master为local模式运行spark作业,这种方式一般用于调试,不用连接远程集群. 集群 ...

  8. Spark记录-Spark on Yarn框架

    一.客户端进行操作 1.根据yarnConf来初始化yarnClient,并启动yarnClient2.创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否 ...

  9. Spark记录-Spark性能优化(开发、资源、数据、shuffle)

    开发调优篇 原则一:避免创建重复的RDD 通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD:接着对这个RDD执行某个算子操作,然后得到 ...

随机推荐

  1. 蓝牙学习笔记三(Android Debug)

    android 端可以通过两种方式去Debug: 一.在手机的设置功能里,开发者模式 Enable,如下图:   http://blog.bluetooth.com/debugging-bluetoo ...

  2. Html_兼容性

    那么如何禁止使用IE8兼容模式解析网页呢?在IE8以上版本的浏览器增加了一个X-UA-Compatible 头标记,用于为IE8指定不同的页面渲染模式. <meta http-equiv=&qu ...

  3. 贪心算法HURUST题目

    题目描述: Yogurt factory The cows have purchased a yogurt factory that makes world-famous Yucky Yogurt. ...

  4. 教你如何自学UI设计

    一.常用的UI相关工具软件 PS Adobe Illustrator(AI) C4D AE Axure Sketch 墨刀 Principle Cutterman PxCook Zeplin 蓝湖 X ...

  5. PHP完美分页类

    <?php /** file: page.class.php 完美分页类 Page */ class Page { private $total; //数据表中总记录数 private $lis ...

  6. 20135202闫佳歆--week6 进程的描述与创建--学习笔记

    此为个人学习笔记存档! week 6 进程的描述与创建 一.进程的描述 1.进程控制块task_struct 以下内容来自视频课件,存档在此. 为了管理进程,内核必须对每个进程进行清晰的描述,进程描述 ...

  7. 第二个Sprint冲刺第四天(燃尽图)

  8. mysql 列转行处理

    CREATE TABLE `table1` ( `id` ) DEFAULT NULL, `name` ) CHARACTER SET utf8 DEFAULT NULL ) ENGINE=MyISA ...

  9. ThreadLocal 与 Synchronized区别

    相同:ThreadLocal和线程同步机制都是为了解决多线程中相同变量的访问冲突问题.不同:Synchronized同步机制采用了“以时间换空间”的方式,仅提供一份变量,让不同的线程排队访问:而Thr ...

  10. 浅谈final修饰的变量

    一直大概的知道final关键字的作用,但是自己实际工作中却很少用,除非在声明一些常量值的时候,今天忽然自己在项目中用一个map进行存储一些值.一开始我只是用private修饰的,心里想的是如果fina ...