什么是Hive

转自: https://blog.csdn.net/qingqing7/article/details/79102691

1、Hive简介

Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用戶查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
首先,我来说说什么是hive(What is Hive?),请看下图:


Hive构建在Hadoop的HDFS和MapReduce之上,用于管理和查询结构化/非结构化数据的数据仓库。

  • 使用HQL作为查询接口
  • 使用HDFS作为底层存储
  • 使用MapReduce作为执行层

Hive的应用,如下图所示

这里集群搭建Hive时用到了HA,最后用HAProxy来做代理。

1.1、结构描述

Hive 的结构可以分为以下几部分:

  • 用戶接口:包括 CLI, Client, WU
  • 元数据存储。通常是存储在关系数据库如 mysql, derby 中
  • 解释器、编译器、优化器、执行器
  • Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算

1、 用戶接口主要有三个:CLI,Client 和 WUI。其中最常用的是 CLI,Cli 启动的时候,会同时启动一个 Hive 副本。Client 是 Hive 的客戶端,用戶连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。
2、 Hive 将元数据存储在数据库中,如 mysql、derby。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
3、 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。

1.2、Hive和普通DB的异同

Hive RDBMS
查询语句 HQL
数据存储 HDFS
索引 1.0.0版本支持
执行延迟
处理数据规模 大(或海量)
执行 MapReduce

1.3、元数据

Hive 将元数据存储在 RDBMS 中,一般常用的有MYSQL和DERBY。由于DERBY只支持单客戶端登录,所以一般采用MySql来存储元数据。

1.4、数据存储

首先,Hive 没有专门的数据存储格式,也没有为数据建立索引,用戶可以非常自由的组织 Hive 中的表,只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
其次,Hive 中所有的数据都存储在 HDFS 中,Hive 中包含以下数据模型:Table,External Table,Partition,Bucket。
1. Hive 中的 Table 和数据库中的 Table 在概念上是类似的,每一个 Table 在 Hive 中都有一个相应的目录存储数据。例如,一个表 app,它在 HDFS 中的路径为:/ warehouse /app,其中,wh是在 hive-site.xml 中由 ${hive.metastore.warehouse.dir} 指定的数据仓库的目录,所有的 Table 数据(不包括 External Table)都保存在这个目录中。
安装hive后,会在hdfs上创建如/user/hive/warehouse/这样的的属于hive的文件夹;如果我们在hive中创建数据库,则会在warehouse下产生一个子目录,形如/user/hive/warehouse/xxx.db;如果接着在该数据库中创建一个表,则会继续产生子目录,形如/user/hive/warehouse/xxx.db/yyyyyy;
2. Partition 对应于数据库中的 Partition 列的密集索引,但是 Hive 中 Partition 的组织方式和数据库中的很不相同。在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中。例如:xiaojun 表中包含 dt 和 city 两个 Partition,则对应于 dt = 20100801, ctry = US 的 HDFS 子目录为:/ warehouse /app/dt=20100801/ctry=US;对应于 dt = 20100801, ctry = CA 的 HDFS 子目录为;/ warehouse /app/dt=20100801/ctry=CA
这里对应了Hive将数据分块的方式,它是以某一个变量的取值来分枝的,一个值对应一个枝,即对应一个目录,,然后再用下一个变量进一步分枝,即进一步分出更多目录;
如果创建表时有分区,则会在目录中产生分区标识来区分的文件,形如/user/hive/warehouse/xxx.db/yyyyyy/date=20180521,文件中即保存着相关的内容,以一定的分隔符区分字段;
3. Buckets 对指定列计算 hash,根据 hash 值切分数据,目的是为了并行,每一个 Bucket 对应一个文件。将 user 列分散至 32 个 bucket,首先对 user 列的值计算 hash,对应 hash 值为 0 的HDFS 目录为:/ warehouse /app/dt =20100801/ctry=US/part-00000;hash 值为 20 的 H
DFS 目录为:/ warehouse /app/dt =20100801/ctry=US/part-00020
如果指定Buckets,则date=20180521不是文件,而是文件名,然后再它的下级会产生以某一列值的hash 值为区分的文件,形如/user/hive/warehouse/xxx.db/yyyyyy/date=20180521/part-00000,文件中即保存着相关的内容
4. External Table 指向已经在 HDFS 中存在的数据,可以创建 Partition。它和 Table 在元数据的组
织上是相同的,而实际数据的存储则有较大的差异。

Table (内部表)的创建过程和数据加载过程(这两个过程可以在同一个语句中完成),在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除。
External Table 只有一个过程,加载数据和创建表同时完成(CREATE EXTERNAL TABLE ……LOCATION),实际数据是存储在 LOCATION 后面指定的 HDFS 路径中,并不会移动到数据仓库目录中。当删除一个 External Table 时,仅删除hive的元数据,不会删除hdfs上对应的文件。

hive 的理解的更多相关文章

  1. hive元数据库理解

    在hive2.1.1 里面一共有59张表 表1 VERSION ; version表存hive的版本信息,该表中数据只有一条,如果存在多条,会造成hive启动不起来. 表2  DBS select * ...

  2. hive的简单理解--笔记

    Hive的理解 数据仓库的工具  Hive仅仅是在hadoop上面包装了SQL: Hive的数据存储在hadoop上 Hive的计算由MR进行 Hive批量处理数据  Hive的特点 1 可扩展性(h ...

  3. hive权威指南<一>

    一.ETL介绍: 数据抽取:把不同的数据源数据抓取过来,存到某个地方 数据清洗:过滤那些不符合要求的数据或者修正数据之后再进行抽取 不完整的数据:比如数据里一些应该有的信息缺失,需要补全后再写入数据仓 ...

  4. Hive与Hbase关系整合

    近期工作用到了Hive与Hbase的关系整合,虽然从网上参考了很多的资料,但是大多数讲的都不是很细,于是决定将这块知识点好好总结一下供大家分享,共同掌握! 本篇文章在具体介绍Hive与Hbase整合之 ...

  5. 第1节 hive安装:2、3、4、5、(多看几遍)

    第1节 hive安装: 2.数据仓库的基本概念: 3.hive的基本介绍: 4.hive的基本架构以及与hadoop的关系以及RDBMS的对比等 5.hive的安装之(使用mysql作为元数据信息存储 ...

  6. Hive 3.x 配置&详解

    Hive 1. 数据仓库概述 1.1 基本概念 数据仓库(英语:Data Warehouse,简称数仓.DW),是一个用于存储.分析.报告的数据系统. 数据仓库的目的是构建面向分析的集成化数据环境,分 ...

  7. Hive的基本知识与操作

    Hive的基本知识与操作 目录 Hive的基本知识与操作 Hive的基本概念 为什么使用Hive? Hive的特点: Hive的优缺点: Hive应用场景 Hive架构 Client Metastor ...

  8. 数据仓库与hive

    数据仓库与hive hive--数据仓库建模工具之一 一.数据库.数据仓库 1.1 数据库 关系数据库本质上是一个二元关系,说的简单一些,就是一个二维表格,对普通人来说,最简单的理解就是一个Excel ...

  9. 在Hadoop-2.2.0集群上安装 Hive-0.13.1 with MySQL

    fesh个人实践,欢迎经验交流!本文Blog地址:http://www.cnblogs.com/fesh/p/3872872.html 软件环境 操作系统:Ubuntu14.04 JDK版本:jdk1 ...

随机推荐

  1. WPF开发ArcGis系统时的异常信息: ArcGIS product not specified. You must first bind to an ArcGIS version prior to using any ArcGIS components.

    “System.Runtime.InteropServices.COMException”类型的未经处理的异常在 Arcgis_Test.exe 中发生 其他信息: ArcGIS product no ...

  2. Excel2010隔行变色的实现方法 [也可套用格式即可]

    这样excel隔行变色的效果,excel会自动隔行填充不同颜色. 公式说明: =MOD(ROW(),2)=0,实现的效果是偶数行自动填充底纹颜色 =MOD(ROW(),2)=1,实现的效果是奇数行自动 ...

  3. 1.cs与bs结构

    ####CS 与 BS 结构 C/S 结构软件:客户端(Client)服务器(Server)软件,客户端需要单独下载安装之后,才能正常操作的软件 B/S 结构软件:浏览器(Browser)服务器(Se ...

  4. hive数据倾斜原因以及解决办法

    何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...

  5. JavaScript 函数与对象的 简单区别

    直接上例子 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <met ...

  6. 2. instr用法

    跟oracle中的instr用法一样: SQL> select count(*) from t where instr(title,‟oracle‟)>0; COUNT(*) ———- 5 ...

  7. python 阿狸的进阶之路(6)

    常用模块 json # 序列化 #将内存的数据存到硬盘中,中间的格式,可以被多种语言识别,跨平台交互数据 #json 可以将字典之类的数据类型存到字典中 import json dic = {&quo ...

  8. binlog开启和查看

    1. 首先需要将mysql的binlog日志打开.默认是关闭的. 参考网址:Windows下Mysql5.7开启binlog步骤及注意事项(https://www.cnblogs.com/wangwu ...

  9. APP-11-视觉技术-通用文字识别

    1.Postman测试 2.参数 https://cloud.baidu.com/doc/OCR/OCR-API.html#.EC.DF.48.27.9B.69.A4.2C.54.1B.DC.95.6 ...

  10. AS_简单的开始

    1.注释   单行注释  //           多行注释  /* src */ 2.变量   变量名,可以包含字母.数字.下划线.$.但不以数字开头.   变量类型,是严格数据类型.AS有静态类型 ...