节选自 http://www.dianyuan.com/bbs/987183.html 【草根大侠】贴 关于MOS管导通内阻和米勒电容(Qgd)差异对效率的影响
http://www.epc.com.cn/subject/200910/13172.html 理解功率MOSFET的开关损耗(图)

最近做了一款正激有源钳位电源,DC48输入,DC28V输出,功率200W,频率100K。下边分别说说MOS管的差异

1.主MOS管用的IRF640,钳位管也用的IRF640 ,输出整流管用的MBR20200;实测效率满载87.5%。IRF640的主要参数

2.正好参加了元器件网的特约评论员活动,给了几片英飞凌的IPA075N15N3 G,在此先谢谢元器件网及源源。拿到手了就想换上去看看有啥区别,就把主MOS管换了个075N15,结果还真不一样,满载效率直接上升3个百分点,到了90.5%。再把IPA075N15N3 G的主要参数放上来


先从原理上分析下

1.第一种情况,IRF640的总输入功率Pin640=200/0.875=228.5W,输入电流Iin640=228.5/48=4.76A,导通损耗Pd640=4.764.760.18(IRF640的导通内阻)*ton

2.第二种情况,075N15的总输入功率PinN15=200/0.905=221W,输入电流IinN15=221/48=4.6A,导通损耗PdN15=4.64.60.0075*ton

3.两个导通损耗相差Pd=Pd640 -PdN15 两个的总功率相差P=228.5-221=7.5W

两个的开关损耗相差Pk=P-Pd

以上所算的都是大概值,因开关损耗的算法比较繁琐,这就不算了,好多电源资料上都有。米勒电容主要影响开关速度,他里边所存的电量会和变压器漏感,还有MOS的一些寄生参数,PCB的一些寄生参数等产生谐振,影响效率。所以应选择米勒电容比较小的MOS,从测试的波形可以形象的表达出来!

这个是640的

这个是IPA075N15N3 G的

实际用的时候,我用的是国产640,他的资料里边关于640的特性特别少,所以就用了IR的资料。变压器是我自己绕的,绕的不好,用的骨架太大,公司没小的了,骨架一半都没用完,所以漏感大了。

物有所长,必有所短。075N15效率高但价格很高,效率高,可靠性好,散热好做;而640的效率低点,但价格很低(尤其国产640更低)。在选取时大家可根据自己的情况选取,尽量的满足客户要求。

因MOS导通时是从输入电容充电,Ciss为Cgs与Cgd之和,Cgs与Cgd一样有米勒效应关系,所以就一并考虑.MOS完全导通时,Vgs必增加,Cgd也会增加,Ciss也会增加

今天先从导通内阻说起吧大家都知道,一般情况下电压越高,导通内阻越大。这个就和MOS的制作工艺有关系了,为了保证足够大的漏源击穿电压Vds,需要有高电阻率外延层,这会使MOS的导通电阻增大。

根据选择的拓扑选择合适的MOS管及吸收电路,再保证高端Vds不超的情况下,尽量选择耐压低的管子,耐压高的管子一般会很贵,品种单一没有耐压低的可选性多,而且效率不好提升。

耐压相同的管子一般情况下,导通内阻越小价格越高,根据自己的实际使用,在性价比中尽量折中。尽量把鱼和熊掌全得到!

栅源电压Vgs的选择对导通电阻也有影响,电压越高导通越好,导通程度越好,内阻越小,但随着栅源电压Vgs的升高,开关速度会降低,这个以后说;还有可能导致栅源电压Vgs击穿,器件失效。栅源电压越低,导通越差,内阻越大,效率越低。所以建议大家选取栅源电压Vgs为10V-18V之间。

做好散热,导通内阻随着温度的升高而增大,所以要把热设计搞好,温升尽量的低,效率尽量的高。

这个在管子的datasheet里边都有体现,下边咱看下075N15的

栅源电压不同,导通内阻也不一样。

这个虽然没有直接标出导通内阻,但从电流上可以体现出来,温度升高电流减小,输入电压不变说明内阻增大。

以上所说,希望对大家在以后选取MOS时有些帮助

再说下MOS管的寄生电容对效率的影响把,这个涉及的比较多了。咱一切从简单的说,以照顾新人为主,好多大侠比我还懂!

大家知道MOS的极间电容直接影响其开关特性,其等效电路如图

输入电容Ciss=Cgs+Cdg (D,S短接),输出电容Coss=Cds+Cgd(G,S短接)

反馈电容Crss=Cgd(也叫米勒电容)

以上是MOS管的电容特性,有定义Q=C*V可得,在电压一定时,电容量越小,Qg越小。

而Qg为栅极的总电荷量,Qgs为栅源极间的电荷量,Qgd为栅漏极间的电荷量。再根据公式t=Q/I得,当电流一定时,Q越小,时间越短,即开关速度越快,开关损耗越小。

所以再选取MOS时尽量选取Qg小的,以减小开关损耗。

而Qgs主要影响开启时间,Qgd主要影响关断时间。

1.在两个MOS管的耐压及电流一定时,选取Qg小的MOS;

2.如我上边的波形及两个资料来看,在Qg一样时要选取Qgd小的MOS。

3.根据自己的实际功率选择合适的MOS,一般情况下内阻越小,Qg越大;Vds越小,Qg越 大。

4.根据实际频率选择合适MOS,频率越高开关损耗越大,这个时候可能你的开关损耗远大 于你的导通损耗,这时要适当的选择内阻大点的MOS,以提升开关损耗;

5.尽量选择贴片的MOS,这样MOS的引脚短,引脚上的寄生电感等参数会小的多,减小损耗!

同频率下开关速度越快,开关损耗越小。而你同频率的开关速度取决于哪,你的寄生电容的冲放电速度。那个公式是对的,是频率越高开关损耗越大。但你的频率高了,更应该选寄生电容小的MOS,这样才能有效减小开关损耗,提升效率!

个人觉得,MOS管的寄生电容小,EMI也会减小。你的寄生电容小,开关速度快,MOS管的反峰小,就拿我上边两个波形图可以体现出来,明显640的EMI要大!

你要这样想呢,你开的快,你关的也快呢;或者你开的慢,关的快呢。开启速度可以在你的PWM到你的栅极加个电阻限制下电流,但关断速度就全靠你管子的寄生电容参数了。这个一般我会看Qgd,就像我上边波形显示的一样,那个Qgd大的640关断波形和速度就是没075N15的快,所以这就和你选择管子有关系了。你说的“我觉得还是应该看你的开关管漏端电压的下降/上升和开关管电流的上升/下降时间的交叠时间吧,你开得快,交叠时间多;和你开得慢,交叠时间少”是对的,但你可以通过选择MOS管的寄生电容尽量的去减小你的交叠时间,去提高效率。软开关不也是刻意去改变管子的导通关断,去实现零电压或零电流,这也是软开关技术效率高的原因之一吧!

本文详细分析计算开关损耗,并论述实际状态下功率MOSFET的开通过程和自然零电压关断的过程,从而使电子工程师知道哪个参数起主导作用并更加深入理解MOSFET。

MOSFET开关损耗
1 开通过程中MOSFET开关损耗
功率MOSFET的栅极电荷特性如图1所示。值得注意的是:下面的开通过程对应着BUCK变换器上管的开通状态,对于下管是0电压开通,因此开关损耗很小,可以忽略不计。

图1 MOSFET开关过程中栅极电荷特性

开通过程中,从t0时刻起,栅源极间电容开始充电,栅电压开始上升,栅极电压为
其中:
,VGS为PWM栅极驱动器的输出电压,Ron为PWM栅极驱动器内部串联导通电阻,Ciss为MOSFET输入电容,Rg为MOSFET的栅极电阻。

VGS电压从0增加到开启阈值电压VTH前,漏极没有电流流过,时间t1为
VGS电压从VTH增加到米勒平台电压VGP的时间t2为
VGS处于米勒平台的时间t3为
t3也可以用下面公式计算:
注意到了米勒平台后,漏极电流达到系统最大电流ID,就保持在电路决定的恒定最大值ID,漏极电压开始下降,MOSFET固有的转移特性使栅极电压和漏极电流保持比例的关系,漏极电流恒定,因此栅极电压也保持恒定,这样栅极电压不变,栅源极间的电容不再流过电流,驱动的电流全部流过米勒电容。过了米勒平台后,MOSFET完全导通,栅极电压和漏极电流不再受转移特性的约束,就继续地增大,直到等于驱动电路的电源的电压。

MOSFET开通损耗主要发生在t2和t3时间段。下面以一个具体的实例计算。输入电压12V,输出电压3.3V/6A,开关频率350kHz,PWM栅极驱动器电压为5V,导通电阻1.5Ω,关断的下拉电阻为0.5Ω,所用的MOSFET为AO4468,具体参数为Ciss=955pF,Coss=145pF,Crss=112pF,Rg=0.5Ω;当VGS=4.5V,Qg=9nC;当VGS=10V,Qg=17nC,Qgd=4.7nC,Qgs=3.4nC;当VGS=5V且ID=11.6A,跨导gFS=19S;当VDS=VGS且ID=250μA,VTH=2V;当VGS=4.5V且ID=10A,RDS(ON)=17.4mΩ。

开通时米勒平台电压VGP:
计算可以得到电感L=4.7μH.,满载时电感的峰峰电流为1.454A,电感的谷点电流为5.273A,峰值电流为6.727A,所以,开通时米勒平台电压VGP=2+5.273/19=2.278V,可以计算得到:

开通过程中产生开关损耗为
开通过程中,Crss和米勒平台时间t3成正比,计算可以得出米勒平台所占开通损耗比例为84%,因此米勒电容Crss及所对应的Qgd在MOSFET的开关损耗中起主导作用。Ciss=Crss+Cgs,Ciss所对应电荷为Qg。对于两个不同的MOSFET,两个不同的开关管,即使A管的Qg和Ciss小于B管的,但如果A管的Crss比B管的大得多时,A管的开关损耗就有可能大于B管。因此在实际选取MOSFET时,需要优先考虑米勒电容Crss的值。

减小驱动电阻可以同时降低t3和t2,从而降低开关损耗,但是过高的开关速度会引起EMI的问题。提高栅驱动电压也可以降低t3时间。降低米勒电压,也就是降低阈值开启电压,提高跨导,也可以降低t3时间从而降低开关损耗。但过低的阈值开启会使MOSFET容易受到干扰误导通,增大跨导将增加工艺复杂程度和成本。

2 关断过程中MOSFET开关损耗
关断的过程如图1所示,分析和上面的过程相同,需注意的就是此时要用PWM驱动器内部的下拉电阻0.5Ω和Rg串联计算,同时电流要用最大电流即峰值电流6.727A来计算关断的米勒平台电压及相关的时间值:VGP=2+6.727/19=2.354V。
关断过程中产生开关损耗为:
Crss一定时,Ciss越大,除了对开关损耗有一定的影响,还会影响开通和关断的延时时间,开通延时为图1中的t1和t2,图2中的t8和t9。
图2 断续模式工作波形

Coss产生开关损耗与对开关过程的影响
1 Coss产生的开关损耗
通常,在MOSFET关断的过程中,Coss充电,能量将储存在其中。Coss同时也影响MOSFET关断过程中的电压的上升率dVDS/dt,Coss越大,dVDS/dt就越小,这样引起的EMI就越小。反之,Coss越小,dVDS/dt就越大,就越容易产生EMI的问题。

但是,在硬开关的过程中,Coss又不能太大,因为Coss储存的能量将在MOSFET开通的过程中,放电释放能量,将产生更多的功耗降低系统的整体效率,同时在开通过程中,产生大的电流尖峰。

开通过程中大的电流尖峰产生大的电流应力,瞬态过程中有可能损坏MOSFET,同时还会产生电流干扰,带来EMI的问题;另外,大的开通电流尖峰也会给峰值电流模式的PWM控制器带来电流检测的问题,需要更大的前沿消隐时间,防止电流误检测,从而降低了系统能够工作的最小占空比值。
Coss产生的损耗为:
对于BUCK变换器,工作在连续模式时,开通时MOSFET的电压为输入电源电压。当工作在断续模式时,由于输出电感以输出电压为中心振荡,Coss电压值为开通瞬态时MOSFET的两端电压值,如图2所示。

2 Coss对开关过程的影响
图1中VDS的电压波形是基于理想状态下,用工程简化方式来分析的。由于Coss存在,实际的开关过程中的电压和电流波形与图1波形会有一些差异,如图3所示。下面以关断过程为例说明。基于理想状态下,以工程简化方式,认为VDS在t7时间段内线性地从最小值上升到输入电压,电流在t8时间段内线性地从最大值下降到0。
图3 MOSFET开关过程中实际波形

实际过程中,由于Coss影响,大部分电流从MOSFET中流过,流过Coss的非常小,甚至可以忽略不计,因此Coss的充电速度非常慢,电流VDS上升的速率也非常慢。也可以这样理解:正是因为Coss的存在,在关断的过程中,由于电容电压不能突变,因此VDS的电压一直维持在较低的电压,可以认为是ZVS,即0电压关断,功率损耗很小。

同样的,在开通的过程中,由于Coss的存在,电容电压不能突变,因此VDS的电压一直维持在较高的电压,实际的功率损耗很大。

在理想状态的工程简化方式下,开通损耗和关断损耗基本相同,见图1中的阴影部分。而实际的状态下,关断损耗很小而开通损耗很大,见图3中的阴影部分。

从上面的分析可以看出:在实际的状态下,Coss将绝大部分的关断损耗转移到开通损耗中,但是总的开关功率损耗基本相同。图4波形可以看到,关断时,VDS的电压在米勒平台起始时,电压上升速度非常慢,在米勒平台快结束时开始快速上升。
图4 非连续模式开关过程中波形

Coss越大或在DS极额外的并联更大的电容,关断时MOSFET越接近理想的ZVS,关断功率损耗越小,那么更多能量通过Coss转移到开通损耗中。为了使MOSFET整个开关周期都工作于ZVS,必须利用外部的条件和电路特性,实现其在开通过程的ZVS。如同步BUCK电路下侧续流管,由于其寄生的二极管或并联的肖特基二极管先导通,然后续流的同步MOSFET才导通,因此同步MOSFET是0电压导通ZVS,而其关断是自然的0电压关断ZVS,因此同步MOSFET在整个开关周期是0电压的开关ZVS,开关损耗非常小,几乎可以忽略不计,所以同步MOSFET只有RDS(ON)所产生的导通损耗,选取时只需要考虑RDS(ON)而不需要考虑Crss的值。

注意到图1是基于连续电流模式下所得到的波形,对于非连续模式,由于开通前的电流为0,所以,除了Coss放电产生的功耗外,没有开关的损耗,即非连续模式下开通损耗为0。但在实际的检测中,非连续模式下仍然可以看到VGS有米勒平台,这主要是由于Coss的放电电流产生的。Coss放电快,持续的时间短,这样电流迅速降低,由于VGS和ID的受转移特性的约束,所以当电流突然降低时,VGS也会降低,VGS波形前沿的米勒平台处产生一个下降的凹坑,并伴随着振荡。

[转] 高频 mos 选择需要考虑相关资料的更多相关文章

  1. 全文检索解决方案(lucene工具类以及sphinx相关资料)

    介绍两种全文检索的技术. 1.  lucene+ 中文分词(IK) 关于lucene的原理,在这里可以得到很好的学习. http://www.blogjava.net/zhyiwww/archive/ ...

  2. iOS10以及xCode8相关资料收集

    兼容iOS 10 资料整理笔记 源文:http://www.jianshu.com/p/0cc7aad638d9 1.Notification(通知) 自从Notification被引入之后,苹果就不 ...

  3. AssetBundle机制相关资料收集

    原地址:http://www.cnblogs.com/realtimepixels/p/3652075.html AssetBundle机制相关资料收集 最近网友通过网站搜索Unity3D在手机及其他 ...

  4. http连接优化与浏览器允许的并发请求资源数相关资料(整理转载)

    网页性能优化相关资料: https://developer.yahoo.com/performance/rules.html#page-nav 前端技术的逐渐成熟,还衍生了domain hash, c ...

  5. 【SDN】SDN相关资料--了解一下电信领域的SDN

    SDN相关资料 数据中心架构下ospf bgp如何选择及优缺点? - 数据中心 - 知乎 组播扩展OSPF_百度百科 carrier.huawei.com/cn/products/fixed-netw ...

  6. Android Notification 消息通知 相关资料.md

    目录 Android Notification 消息通知 相关资料 Android 5.0 Lollipop (API 21)无法正常显示通知图标,只能看到一个白色方块或灰色方块的问题 解决方案 参考 ...

  7. React Test相关资料

    karma 前端测试驱动器,生产测试报告,多个浏览器 mocha js的测试框架,相当于junit chai,单元测试的断言库,提供expect shudl assert enzyme sinon.j ...

  8. Nao 类人机器人 相关资料

    Nao 类人机器人 相关资料: 1.兄妹 PEPPER :在山东烟台生产,http://www.robot-china.com/news/201510/30/26564.html 2.国内机器人领先公 ...

  9. GBrowse配置相关资料

    GBrowse配置相关资料(形状.颜色.配置.gff3) http://gmod.org/wiki/Glyphs_and_Glyph_Optionshttp://gmod.org/wiki/GBrow ...

随机推荐

  1. DevOps需要的工具

    DevOps需要的工具: 代码管理(SCM):GitHub.GitLab.BitBucket.SubVersion 构建工具:Ant.Gradle.maven 自动部署:Capistrano.Code ...

  2. golang GBK与UTF-8互转的例子

    package main import ( "code.google.com/p/mahonia" "fmt" ) func main() { //" ...

  3. MySQL测试报告

    硬件配置: 3台服务器:192.168.23.168,  192.168.23.169,  192.168.23.170 硬盘:230G 内存:16G Linux内核:Linux geoserver. ...

  4. winform无边框窗体更改大小

    实现方式一: const int HTLEFT = 10; const int HTRIGHT = 11; const int HTTOP = 12; const int HTTOPLEFT = 13 ...

  5. 【springboot】之 解析@EnableWebMvc 、WebMvcConfigurationSupport和WebMvcConfigurationAdapter

    springboot默认格式化日期只需要在application文件中配置 spring.jackson.date-format= yyyy-MM-dd HH:mm:ss spring.jackson ...

  6. 使用RetionalRose根据现有的java工程逆向生成类图

    1.进入RetionalRose选择J2EE模板 2.在菜单栏选择tools->java/j2EE->reverse engineer 3.编辑路径Edit CLASSPATH选择要生成类 ...

  7. Hadoop概念学习系列之关于hadoop-2.2.0和hadoop2.6.0的winutils.exe、hadoop.dll版本混用(易出错)(四十三)

    问题详情是 2016-12-10 23:24:13,317 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Met ...

  8. ASP.NET重写Render 加载CSS样式文件和JS文件(切换CSS换皮肤)

    网页换皮肤的方式有很多种,最简单的通常就是切换页面CSS,而CSS通常写在外部CSS文件里.那么切换CSS其实就是更换html里的link href路径.我在网上搜索了下. 一般有两种方式: 1.页面 ...

  9. Flink 集群安装配置

    以下操作均在主节点进行 1.环境变量 添加FLINK_HOME以及path的内容: export FLINK_HOME=/bigdata/flink- export PATH=$PATH:$JAVA_ ...

  10. 服务容错保护断路器Hystrix之一:入门示例介绍(springcloud引入Hystrix的两种方式)

    限流知识<高可用服务设计之二:Rate limiting 限流与降级> 在微服务架构中,我们将系统拆分成了一个个的服务单元,各单元间通过服务注册与订阅的方式互相依赖.由于每个单元都在不同的 ...