Notes on Noise Contrastive Estimation and Negative Sampling
## 生成负样本
在常见的关系抽取应用中,我们经常需要生成负样本来训练一个好的系统。如果没有负样本,系统会趋向于把所有的变量分类成正类。但是,在关系抽取中,并不容易找到足够的高质量的负样本(ground truth)。这种情况下,我们通常需要使用distant supervision来生成负样本。
负样本的生成多少可看成是一种艺术。以下讨论了几种常用的方法,还有些方法没有列出。
- random sampling
- incompatible relations
- domain-specific knowledge
## 随机抽样 Random samples
另一种产生负面证据的方法是在所有变量中随机抽取一小部分(people mention pairs in our spouse example),并将其标记为负面证据。
这可能会产生一些错误的负面例子,但是如果统计变量更有可能是错误的,那么随机抽样就会起作用。
例如,大多数人在句子中提到成对,但他们不是配偶,我们就可以在提及成对的人群中,随机抽取一小部分的,并把它们标记为错误的配偶关系的例子。
## 不相容关系
不相容关系总是或常常是与我们想要抽取的关系冲突的。比如我们有2个实体,x & y. 我们想抽取A关系,而B是与A不相容关系,我们有:
>> B(x,y) => not A(x,y)
比如,我们要为"spouse"(配偶)关系生成负样本,我们可以使用非配偶关系来作为与之不相容的关系,比如parents, children, or siblings: 如果 x 是 y 的父母,那么x和y不能是夫妻。
## 特定领域规则
有时,我们可以利用其他领域特定的知识来生成负样本。这些规则的设计很大程度上依赖于应用场景。例如,对于配偶关系,一个使用时间信息的领域特定规则是“不同时活着的人不可能是配偶”。Specifically, if a person x has birth_date later than y's death_date, then x and y cannot be spouses.
This is the video of Negative Sampling in Natural Language Process Course in Coursea.com:
https://www.coursera.org/learn/nlp-sequence-models/lecture/Iwx0e/negative-sampling
Related Papers
[Noise-Contrastive Estimation of Unnormalized Statistical Models with Applications to Natural Image Statistics]
[Word2vec Parameter Learning Explained]
[Efficient Estimation of Word Representation in Vector Space]
[Distributed Representations of Words and Phrases and their Compositionality]
[Notes on Noise Contrastive Estimation and Negative Sampling]
Notes on Noise Contrastive Estimation and Negative Sampling的更多相关文章
- Noise Contrastive Estimation
Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0, ...
- DL4NLP——词表示模型(三)word2vec(CBOW/Skip-gram)的加速:Hierarchical Softmax与Negative Sampling
上篇博文提到,原始的CBOW / Skip-gram模型虽然去掉了NPLM中的隐藏层从而减少了耗时,但由于输出层仍然是softmax(),所以实际上依然“impractical”.所以接下来就介绍一下 ...
- 论文解读(SelfGNN)《Self-supervised Graph Neural Networks without explicit negative sampling》
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. K ...
- word2vec 中的数学原理具体解释(五)基于 Negative Sampling 的模型
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注. 因为 word2vec 的作者 Tomas ...
- word2vec原理(三) 基于Negative Sampling的模型
word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sa ...
- [DeeplearningAI笔记]序列模型2.7负采样Negative sampling
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 负采样 Negative sampling Mikolov T, Sutskever I, Chen K, et a ...
- word2vec改进之Negative Sampling
训练网络时往往会对全部的神经元参数进行微调,从而让训练结果更加准确.但在这个网络中,训练参数很多,每次微调上百万的数据是很浪费计算资源的.那么Negative Sampling方法可以通过每次调整很小 ...
- 词表征 2:word2vec、CBoW、Skip-Gram、Negative Sampling、Hierarchical Softmax
原文地址:https://www.jianshu.com/p/5a896955abf0 2)基于迭代的方法直接学 相较于基于SVD的方法直接捕获所有共现值的做法,基于迭代的方法一次只捕获一个窗口内的词 ...
- 【计算语言学实验】基于 Skip-Gram with Negative Sampling (SGNS) 的汉语词向量学习和评估
一.概述 训练语料来源:维基媒体 https://dumps.wikimedia.org/backup-index.html 汉语数据 用word2vec训练词向量,并用所学得的词向量,计算 pku_ ...
随机推荐
- Java NIO通信的基础,基于TCP C/S例子介绍
为了更好的理解Netty异步事件驱动网络通信框架,有必要先了解一点Java NIO原生的通信理论,下面将结合基于TCP的例子程序,含客户端和服务端的源码,实现了Echo流程. Java NIO的核心概 ...
- delphi Int64Rec 应用实例
以下代码可以看到 Int64Rec <--> Int64 procedure TForm1.Button2Click(Sender: TObject); var ii1,ii2,ii3:I ...
- Linux系统构成和基本操作
Linux的优势 Linux的目录结构 Linux目录与文件管理 列出目录内容 创建新目录(文件夹) 创建文件 复制文件或目录 删除文件或目录 移动目录或文件 查看文件属性 文件属性含义 读权限-4 ...
- Django的版本选择
自从1.0版本开始,Django按照以下形式命名版本编号: 按照A.B或A.B.C的形式命名版本编号.A.B是主版本号,包含新功能以及对原有功能的改进,每一个新版本都向前兼容,Django大概每8个月 ...
- git命令的简单使用
Gitbash初始化设置 Gitbash安装成功后要配置email和name,否则commit的时候会报错: 运行 git config --global user.email "你的ema ...
- [蓝桥杯]ALGO-97.算法训练_排序
题目描述: 问题描述 编写一个程序,输入3个整数,然后程序将对这三个整数按照从大到小进行排列. 输入格式:输入只有一行,即三个整数,中间用空格隔开. 输出格式:输出只有一行,即排序后的结果. 输入输出 ...
- Hadoop错误集:Journal Storage Directory not formatted
类型一: 当你从异常信息中看到JournalNode not formatted,如果在异常中看到三个节点都提示需要格式化JournalNode. 如果你是新建集群,你可以重新格式化NameNode, ...
- springboot工程添加404页面
首先在/src/main/resources下创建文件夹/public/error 在文件夹里创建html页面,jsp页面不可以. <html> <body> <img ...
- [UE4]AWP组合
AWP狙击枪可以由主枪和镜头模型组合而成. 一.主枪 二.镜头组合
- Iptabels防火墙和SElinux
两者的区别: iptables用于设置防火墙(firewall), 即管理内外通信. iptables是Linux下功能强大的应用层防火墙工具iptables 能做到“控制内部机器上网与不上网,访问哪 ...