Problem H. Parallel Worlds

题目连接:

http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c7022&all_runs=1&action=140

Description

Alex is a Baisuralen State University student. Alex and BSU live in two parallel worlds. As we know from

school geometry classes, parallel lines do not intersect. However, in reality and unfortunately these two

parallel worlds do intersect.

There are some courses in BSU that came from hell. They make parallel worlds intersect and force Alex

to visit lectures. Or even more, they cause pain and humiliation. (It was once even said, that the other

name for course of ‘Functional Analysis’ (shortly FUN) is ‘Pain and Humiliation’. That is, FUN is not

fun.) For example, once Alex slept during such course, and was woken up by professor’s voice. Afterwards

he was asked if he had moved to Banach Space and was told to move to railway station.

Not everything is so bad, however. There are courses that are from heaven. They are finished in any mark

you want without needing to visit them.

You are requested to provide a procedure to establish that some courses are from heaven. As part of that,

you need to provide two sets of points P and Q on a plane, each containing N points. All points in P

and Q should be distinct, and the intersection of P and Q should be empty. Sets P and Q should satisfy

the following property. There should exist N pairwise nonparallel lines, such that sets of projections of P

and Q on these lines coincide. Of course, the lines should also be provided. Moreover, pairs of points that

coincide are also required.

One can show that for any positive integer N such sets of points exist.

Input

The only line of input contains a single number N (1 ≤ N ≤ 100).

Output

Output 3 × N lines.

First N lines should contain two real numbers x

P

i

y

P

i — coordinates of points in set P.

Next N lines should contain two real numbers x

Q

i

y

Q

i — coordinates of points in set Q.

Afterwards output the descriptions of the lines: three real numbers Ai

, Bi and Ci—coefficients of the ith

line (Aix + Biy + Ci = 0), and a permutation of numbers from 1 to N (qi1, qi2, . . . , qiN ) (the projection of

the first point from P should coincide with the projection of the qi1st point of the set Q, the projection

of the second point from P should coincide with the projection of the qi2nd point of Q and so on).

Absolute value of all numbers should not be greater than 106

.

The distance between any two points from P ∪ Q should be at least 1. And P ∩ Q = ∅.

Two lines are considered parallel if the angle between the lines is less than 10−2

rad., or if the cross

product AiBj − BiAj is less than 10−6

.

Two projections coincide if the distance between them is not greater than 10−6

Sample Input

1

Sample Output

0 0

1 0

1 0 0 1

Hint

题意

让你构造两个点集合,各有n个点,且不相交。

然后你需要构造n条直线

然后需要这俩集合中的点,对于每一条线,都能在直线上面的映射相同。

题解:

看着烧脑子,但实际上构造一个正2n边形就好了。

代码

 #include<bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
vector<pair<double,double> >P;
vector<pair<double,double> >Q; /* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
LINE makeline(POINT p1,POINT p2)
{
LINE tl;
int sign = 1;
tl.a=p2.y-p1.y;
if(tl.a<0)
{
sign = -1;
tl.a=sign*tl.a;
}
tl.b=sign*(p1.x-p2.x);
tl.c=sign*(p1.y*p2.x-p1.x*p2.y);
return tl;
}
vector<LINE>AA;
int mp[105];
int main(){
int n;
scanf("%d",&n);
if(n==1){
printf("0 0\n");
printf("1 0\n");
printf("1 0 0 1\n");
return 0;
}
double len = 10000;
double x = pi/n;
POINT AAA,BBB;
for(int i=0;i<2*n;i++){
double X = len * sin(x*i);
double Y = len * cos(x*i);
if(i%2==0){
P.push_back(make_pair(X,Y));
AAA = POINT(X,Y);
}else{
Q.push_back(make_pair(X,Y));
BBB = POINT(X,Y);
}
if(i>=1&&i<=n){
POINT A,B;
A.x = (AAA.x+BBB.x)/2.0;
A.y = (AAA.y+BBB.y)/2.0;
B.x = 0;
B.y = 0;
AA.push_back(makeline(A,B));
}
}
for(int i=0;i<n;i++)
printf("%.12f %.12f\n",P[i].first,P[i].second);
for(int i=0;i<n;i++)
printf("%.12f %.12f\n",Q[i].first,Q[i].second);
for(int i=0;i<n;i++){
printf("%.12f %.12f %.12f ",AA[i].a,AA[i].b,AA[i].c);
int a1 = i/2,b1 = (i+1)/2;
for(int j=0;j<n;j++){
mp[(a1-j+n)%n] = (b1+j)%n;
}
for(int j=0;j<n;j++)
printf("%d ",mp[j]+1);
printf("\n");
}
}

Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem H. Parallel Worlds 计算几何的更多相关文章

  1. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem K. UTF-8 Decoder 模拟题

    Problem K. UTF-8 Decoder 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c702 ...

  2. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem I. Alien Rectangles 数学

    Problem I. Alien Rectangles 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c ...

  3. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem F. Turning Grille 暴力

    Problem F. Turning Grille 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c70 ...

  4. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem C. Cargo Transportation 暴力

    Problem C. Cargo Transportation 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed ...

  5. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem G. k-palindrome dp

    Problem G. k-palindrome 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c7022 ...

  6. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem A. A + B

    Problem A. A + B 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c7022&al ...

  7. 2010 NEERC Western subregional

    2010 NEERC Western subregional Problem A. Area and Circumference 题目描述:给定平面上的\(n\)个矩形,求出面积与周长比的最大值. s ...

  8. 2009-2010 ACM-ICPC, NEERC, Western Subregional Contest

    2009-2010 ACM-ICPC, NEERC, Western Subregional Contest 排名 A B C D E F G H I J K L X 1 0 1 1 1 0 1 X ...

  9. 【GYM101409】2010-2011 ACM-ICPC, NEERC, Western Subregional Contest

    A-Area and Circumference 题目大意:在平面上给出$N$个三角形,问周长和面积比的最大值. #include <iostream> #include <algo ...

随机推荐

  1. JavaScript 获取 flash 对象

    关于js获取flash对象,网上有非常多的例子,我也尝试了不少方法. 虽然都能用,但是没有我最想要的东西, 后来看了下百度的,虽然很规范,各种情况都考虑到了,但是代码量却不是不容乐观, 前前后后将近2 ...

  2. html5 canvas路径绘制2

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. 【转】VTL-vm模板的变量用法

    http://www.cnblogs.com/zengxlf/archive/2009/05/06/1451004.html 加载foot模块页 #parse("foot.vm") ...

  4. 【转】在Mac OS X 10.8中配置Apache + PHP + MySQL

    CHENYILONG Blog 在Mac OS X 10.8中配置Apache + PHP + MySQL 在Mac OS X 10.8中配置Apache+PHP+MySQL的内容包括: 配置Apac ...

  5. Chrome插件笔记之content_scripts

    一.概论 说这个之前先看一个段子,讲的是甲方有一奇葩客户,这客户看一网站某些样式很别扭不得劲,非要让乙方修改,乍一听没毛病,但关键是这网站不是乙方家的,根本没有修改权限,怎么办,客户就是上帝,上帝的要 ...

  6. 无法执行该操作,因为链接服务器 "xxxxx" 的 OLE DB 访问接口 "SQLNCLI" 无法启动分布式事务

    在存储过程中使用事务,并且使用链接服务器时,报类似下面的错误 链接服务器"****"的 OLE DB 访问接口 "SQLNCLI10" 返回了消息 " ...

  7. jquery的几种ajax方式对比

    jquery的几种ajax方式对比 jquery的ajax方式有如下几种: 1.   $.post(url,params,callback); 2.   $.getJSON(url,params,ca ...

  8. Eric6启动时“无法定位序数4540于动态链接库LIBEAY32.dll”的错误

    参考自:https://blog.csdn.net/HongAndYi/article/details/80721478 在安装PyQt5的编程环境时,安装Eric6-17.12后运行eric6,却出 ...

  9. linux通过sendmail发送邮件

    安装sendmail: [root@li676-235 ~]# yum install sendmail 安装好后执行. [root@li676-235 ~]# /etc/init.d/sendmai ...

  10. CSS之外边距折叠

    外边距折叠 Collapsing margins,即外边距折叠,指的是毗邻的两个或多个外边距 (margin) 会合并成一个外边距. 其中所说的 margin 毗邻,可以归结为以下两点: 这两个或多个 ...