Andrew Ng机器学习课程笔记(二)之逻辑回归

版权声明:本文为博主原创文章,转载请指明转载地址

http://www.cnblogs.com/fydeblog/p/7364636.html

前言

学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新!

这篇博客主要记录了Andrew Ng课程第二章逻辑回归,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等

简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法,它适用于标签 y 取值离散的情况,如:1 0 0 1。比如对邮件进行分类,垃圾邮件用表示,非垃圾邮件用0表示。

实现算法:梯度下降算法

1. 建立逻辑回归假设

括号内的 x跟线性回归的一样,主要是套上g(x),压缩它的函数值范围,方便分类判决。

g(x)的表达式如下:

根据这个函数特性,我们可以知道,g(z)的范围是在(0,1),函数图形如下:

当hθ大于等于0.5时,预测 y=1;当hθ小于 0.5 时,预测 y=0。

2.建立代价函数

对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上来说,我们也可以对逻辑回归模型沿用这个定义,但是问题在于,当我们将带入到这样定义了的代价函数中时,我们得到的代价函数将是一个非凸函数( non-convex function)

如下图所示

这意味着我们的代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。所以需要定义新的代价函数

hθ(x)与 Cost(hθ(x),y)之间的关系如下图所示:

这样构建的Cost(hθ(x),y)函数的特点是: 当实际的y=1且hθ也为1时误差为0,当y=1但hθ不为1时误差随着 hθ的变小而变大;当实际的
y=0 且hθ也为 0 时代价为
0,当 y=0 但 hθ不为0时误差随着 hθ的变大而变大。这样符合单调性,就可以使用梯度下降法。

于是代价函数定义如下

3. 参数更新迭代

这个与线性回归相同

4. 多类别分类: 一对多

很多时候,我们分类的数目是多个的,这里介绍一个叫做"一对多" (one-vs-all) 的分类算法。

我们将多个类中的一个类标记为正向类(y=1),然后将其他所有类都标记为负向类,如图

在我们需要做预测时,我们将所有的分类机都运行一遍,然后对每一个输入变量,都选择最高可能性的输出变量。(就是比较图中三个hθ(x),找到最大值,并判断为相应的类型)

Andrew Ng机器学习课程笔记(二)之逻辑回归的更多相关文章

  1. Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)

    Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...

  2. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  3. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  4. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  5. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  6. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  7. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  8. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 6_Logistic Regression 逻辑回归

    Lecture6 Logistic Regression 逻辑回归 6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 ...

随机推荐

  1. spoj COT2(树上莫队)

    模板.树上莫队的分块就是按dfn分,然后区间之间转移时注意一下就好.有个图方便理解http://blog.csdn.net/thy_asdf/article/details/47377709: #in ...

  2. SPRING框架中ModelAndView、Model、ModelMap区别及详细分析

    转载内容:http://www.cnblogs.com/google4y/p/3421017.html 1. Model Model 是一个接口, 其实现类为ExtendedModelMap,继承了M ...

  3. 状态 ajax

    //html部分 <a href="#" data-status="{$vo.state}" data-urid="{$vo.id}" ...

  4. execl 导出

    /** * 导出   是把数表中的数据添加到execl表中 */ public function export(){ $xlsData = Db('user')->select(); Vendo ...

  5. 认识Hadoop

    概述 开源.分布式存储.分布式计算 大数据生态体系 特点:开源.社区活跃 囊括了大数据处理的方方面面 成熟的生态圈 推荐系统 应用场景 搭建大型数据仓库,PB级数据的存储.处理.分析.统计 日志分析 ...

  6. Android-Throwable: A WebView method was called on thread 'JavaBridge'.

    错误详情: 01-30 03:36:52.441 12000-12048/cn.h5 D/@@@: e.ttt:java.lang.RuntimeException: java.lang.Throwa ...

  7. Android-WebView与本地HTML (互调)

    此篇博客是基于,上两篇博客,Android-WebView与本地HTML (HTML调用-->Java的方法) , Android-WebView与本地HTML (Java调用--->HT ...

  8. css中“~”和“>”是什么意思

    p~ul选择器 p之后出现的所有ul. 两种元素必须拥有相同的父元素,但是 ul不必直接紧随 p. css中“>”是: css3特有的选择器,A>B 表示选择A元素的所有子B元素. 与A ...

  9. Java虚拟机7:垃圾收集(GC)-2(并行和并发的区别)

    1.并发编程下 这两个名词都是并发编程中的概念,在并发编程的模型下的定义: 并发:是在同一个cpu上同时(不是真正的同时,而是看来是同时,因为cpu要在多个程序间切换)运行多个程序. 并行:是多个或同 ...

  10. ES6之Array.from()方法

    Array.from()方法就是将一个类数组对象或者可遍历对象转换成一个真正的数组. 那么什么是类数组对象呢?所谓类数组对象,最基本的要求就是具有length属性的对象. 1.将类数组对象转换为真正数 ...