Caffe学习系列(17): blob
对于blob.h文件。
先看成员变量。定义了6个保护的成员变量,包括前、后向传播的数据,新、旧形状数据(?),
数据个数及容量。
再看成员函数。包括构造函数(4个参数),reshape(改变blob形状),以及很多inline函数。
#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_ #include <algorithm>
#include <string>
#include <vector> #include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp" const int kMaxBlobAxes = ; namespace caffe { /**
* @brief A wrapper around SyncedMemory holders serving as the basic
* computational unit through which Layer%s, Net%s, and Solver%s
* interact.
*
* TODO(dox): more thorough description.
*/
template <typename Dtype>
class Blob {
public:
Blob()
: data_(), diff_(), count_(), capacity_() {} /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
explicit Blob(const int num, const int channels, const int height,
const int width);//构造函数,explicit防止隐式转换
explicit Blob(const vector<int>& shape); /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
void Reshape(const int num, const int channels, const int height,
const int width);
/**
* @brief Change the dimensions of the blob, allocating new memory if
* necessary.
*
* This function can be called both to create an initial allocation
* of memory, and to adjust the dimensions of a top blob during Layer::Reshape
* or Layer::Forward. When changing the size of blob, memory will only be
* reallocated if sufficient memory does not already exist, and excess memory
* will never be freed.
*
* Note that reshaping an input blob and immediately calling Net::Backward is
* an error; either Net::Forward or Net::Reshape need to be called to
* propagate the new input shape to higher layers.
*/
void Reshape(const vector<int>& shape);
void Reshape(const BlobShape& shape);
void ReshapeLike(const Blob& other);
//输出数据维度
inline string shape_string() const {
ostringstream stream;
for (int i = ; i < shape_.size(); ++i) {
stream << shape_[i] << " ";
}
stream << "(" << count_ << ")";//数据个数
return stream.str();
}
inline const vector<int>& shape() const { return shape_; }
/**
* @brief Returns the dimension of the index-th axis (or the negative index-th
* axis from the end, if index is negative).
*
* @param index the axis index, which may be negative as it will be
* "canonicalized" using CanonicalAxisIndex.
* Dies on out of range index.
*/
inline int shape(int index) const {
return shape_[CanonicalAxisIndex(index)];
}
inline int num_axes() const { return shape_.size(); }//返回维度 inline int count() const { return count_; } /**
* @brief Compute the volume of a slice; i.e., the product of dimensions
* among a range of axes.
*
* @param start_axis The first axis to include in the slice.
*
* @param end_axis The first axis to exclude from the slice.
*/
inline int count(int start_axis, int end_axis) const {
CHECK_LE(start_axis, end_axis);//判断维度的索引是否在范围内
CHECK_GE(start_axis, );
CHECK_GE(end_axis, );
CHECK_LE(start_axis, num_axes());
CHECK_LE(end_axis, num_axes());
int count = ;
for (int i = start_axis; i < end_axis; ++i) {
count *= shape(i);//数据的所有维度相乘,即数据的个数
}
return count;
}
/**
* @brief Compute the volume of a slice spanning from a particular first
* axis to the final axis.
*给定的维度到最后的维度之间包含的数据
* @param start_axis The first axis to include in the slice.
*/
inline int count(int start_axis) const {
return count(start_axis, num_axes());
} /**
* @brief Returns the 'canonical' version of a (usually) user-specified axis,
* allowing for negative indexing (e.g., -1 for the last axis).
*支持负数索引,相当于从后往前,
* @param axis_index the axis index.
* If 0 <= index < num_axes(), return index.
* If -num_axes <= index <= -1, return (num_axes() - (-index)),
* e.g., the last axis index (num_axes() - 1) if index == -1,
* the second to last if index == -2, etc.
* Dies on out of range index.
*/
inline int CanonicalAxisIndex(int axis_index) const {
CHECK_GE(axis_index, -num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
CHECK_LT(axis_index, num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
if (axis_index < ) {
return axis_index + num_axes();
}
return axis_index;
} /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
inline int num() const { return LegacyShape(); }
/// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
inline int channels() const { return LegacyShape(); }
/// @brief Deprecated legacy shape accessor height: use shape(2) instead.
inline int height() const { return LegacyShape(); }
/// @brief Deprecated legacy shape accessor width: use shape(3) instead.
inline int width() const { return LegacyShape(); }
//检查blob的维度
inline int LegacyShape(int index) const {
CHECK_LE(num_axes(), )
<< "Cannot use legacy accessors on Blobs with > 4 axes.";
CHECK_LT(index, );
CHECK_GE(index, -);
if (index >= num_axes() || index < -num_axes()) {
// Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
// indexing) -- this special case simulates the one-padding used to fill
// extraneous axes of legacy blobs.
return ;
}
return shape(index);
}
//计算一维线性偏移量?
inline int offset(const int n, const int c = , const int h = ,
const int w = ) const {
CHECK_GE(n, );
CHECK_LE(n, num());
CHECK_GE(channels(), );
CHECK_LE(c, channels());
CHECK_GE(height(), );
CHECK_LE(h, height());
CHECK_GE(width(), );
CHECK_LE(w, width());
return ((n * channels() + c) * height() + h) * width() + w;
}
//同上,参数不同
inline int offset(const vector<int>& indices) const {
CHECK_LE(indices.size(), num_axes());
int offset = ;
for (int i = ; i < num_axes(); ++i) {
offset *= shape(i);
if (indices.size() > i) {
CHECK_GE(indices[i], );
CHECK_LT(indices[i], shape(i));
offset += indices[i];
}
}
return offset;
}
/**
* @brief Copy from a source Blob.
*
* @param source the Blob to copy from
* @param copy_diff if false, copy the data; if true, copy the diff
* @param reshape if false, require this Blob to be pre-shaped to the shape
* of other (and die otherwise); if true, Reshape this Blob to other's
* shape if necessary
*/
//复制blob,如果diff为false的话,则复制data,否则复制diff
//reshape为true,改变blob的形状
void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
bool reshape = false);
//获取内存下的数据(forward采用)
inline Dtype data_at(const int n, const int c, const int h,
const int w) const {
return cpu_data()[offset(n, c, h, w)];
}
//获取内存中diff数据(反向传播采用)
inline Dtype diff_at(const int n, const int c, const int h,
const int w) const {
return cpu_diff()[offset(n, c, h, w)];
} inline Dtype data_at(const vector<int>& index) const {
return cpu_data()[offset(index)];
} inline Dtype diff_at(const vector<int>& index) const {
return cpu_diff()[offset(index)];
}
//同步内存shared_ptr
inline const shared_ptr<SyncedMemory>& data() const {
CHECK(data_);
return data_;
} inline const shared_ptr<SyncedMemory>& diff() const {
CHECK(diff_);
return diff_;
}
//属性
const Dtype* cpu_data() const;
void set_cpu_data(Dtype* data);
const int* gpu_shape() const;
const Dtype* gpu_data() const;
void set_gpu_data(Dtype* data);
const Dtype* cpu_diff() const;
const Dtype* gpu_diff() const;
Dtype* mutable_cpu_data();
Dtype* mutable_gpu_data();
Dtype* mutable_cpu_diff();
Dtype* mutable_gpu_diff(); //计算
void Update();
//从protobuf序列化文件中读取blob对象
void FromProto(const BlobProto& proto, bool reshape = true);
//将对象序列化为protobuf中
void ToProto(BlobProto* proto, bool write_diff = false) const; //计算绝对值
/// @brief Compute the sum of absolute values (L1 norm) of the data.
Dtype asum_data() const;
/// @brief Compute the sum of absolute values (L1 norm) of the diff.
Dtype asum_diff() const;
//计算平方和
/// @brief Compute the sum of squares (L2 norm squared) of the data.
Dtype sumsq_data() const;
/// @brief Compute the sum of squares (L2 norm squared) of the diff.
Dtype sumsq_diff() const;
//
/// @brief Scale the blob data by a constant factor.
void scale_data(Dtype scale_factor);
/// @brief Scale the blob diff by a constant factor.
void scale_diff(Dtype scale_factor); /**
* @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
* data_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*将别的blob的data和diff指针给这个blob,实现数据的共享
同时注意到的是,这个操作会引起这个blob里面的syncedmemory被释放,
因为shared_ptr被用=重置的时候,会调用其析构器?
在前向传递中,对简单的复制比较有用
* This deallocates the SyncedMemory holding this Blob's data_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareData(const Blob& other);
/**
* @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
* diff_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's diff_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareDiff(const Blob& other);
//判断形状是否相等
bool ShapeEquals(const BlobProto& other); protected:
shared_ptr<SyncedMemory> data_;//前向传播的数据,
shared_ptr<SyncedMemory> diff_;//反向传播的数据
shared_ptr<SyncedMemory> shape_data_;//旧的形状数据
vector<int> shape_;//新的形状数据
int count_;//数据的个数
int capacity_;//容量 DISABLE_COPY_AND_ASSIGN(Blob);
}; // class Blob } // namespace caffe #endif // CAFFE_BLOB_HPP_
对于blob.cpp文件,主要关注几个函数的实现。
Reshape函数:将shape_和shape_data_置为新的blob大小,同时统计数据的个数,并为data和diff开辟空间。
#include <climits>
#include <vector> #include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype>//老方法调用新方法
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
const int width) {
vector<int> shape();
shape[] = num;
shape[] = channels;
shape[] = height;
shape[] = width;
Reshape(shape);
} template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
CHECK_LE(shape.size(), kMaxBlobAxes);//是否小于规定的最大BLOB的维度(35维)
count_ = ;
shape_.resize(shape.size());//将旧的数据大小置为新的数据大小
if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
//shape_和shape_data_的区别就在于后者分配了空间(有什么用呢?)
shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
}
int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
for (int i = ; i < shape.size(); ++i) {
CHECK_GE(shape[i], );//检查数据是否合法
if (count_ != ) {
CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
}
count_ *= shape[i];//数据个数
shape_[i] = shape[i];//复制shape到新的和旧的形状数据
shape_data[i] = shape[i];
}
if (count_ > capacity_) {//如果超过了容量,重新分配内存
capacity_ = count_;
data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
}
} template <typename Dtype>
void Blob<Dtype>::Reshape(const BlobShape& shape) {
CHECK_LE(shape.dim_size(), kMaxBlobAxes);
vector<int> shape_vec(shape.dim_size());
for (int i = ; i < shape.dim_size(); ++i) {
shape_vec[i] = shape.dim(i);
}
Reshape(shape_vec);
} template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
Reshape(other.shape());
} template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
const int width)
// capacity_ must be initialized before calling Reshape
: capacity_() {
Reshape(num, channels, height, width);
} template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
// capacity_ must be initialized before calling Reshape
: capacity_() {
Reshape(shape);
} template <typename Dtype>
const int* Blob<Dtype>::gpu_shape() const {
CHECK(shape_data_);
return (const int*)shape_data_->gpu_data();
}
//得到data
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
CHECK(data_);
return (const Dtype*)data_->cpu_data();
}
//设置data
template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
CHECK(data);
// Make sure CPU and GPU sizes remain equal
size_t size = count_ * sizeof(Dtype);
if (data_->size() != size) {
data_.reset(new SyncedMemory(size));
diff_.reset(new SyncedMemory(size));
}
data_->set_cpu_data(data);
} template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
CHECK(data_);
return (const Dtype*)data_->gpu_data();
} template <typename Dtype>
void Blob<Dtype>::set_gpu_data(Dtype* data) {
CHECK(data);
// Make sure CPU and GPU sizes remain equal
size_t size = count_ * sizeof(Dtype);
if (data_->size() != size) {
data_.reset(new SyncedMemory(size));
diff_.reset(new SyncedMemory(size));
}
data_->set_gpu_data(data);
} template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
CHECK(diff_);
return (const Dtype*)diff_->cpu_data();
} template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
CHECK(diff_);
return (const Dtype*)diff_->gpu_data();
} template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
CHECK(data_);
return static_cast<Dtype*>(data_->mutable_cpu_data());
}
//关键字mutable,变量被其修饰时,即使函数为const也能修改之
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
CHECK(data_);
return static_cast<Dtype*>(data_->mutable_gpu_data());
} template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
CHECK(diff_);
return static_cast<Dtype*>(diff_->mutable_cpu_data());
} template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
CHECK(diff_);
return static_cast<Dtype*>(diff_->mutable_gpu_data());
}
//复制blob
template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
CHECK_EQ(count_, other.count());
data_ = other.data();
} template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
CHECK_EQ(count_, other.count());
diff_ = other.diff();
} // The "update" method is used for parameter blobs in a Net, which are stored
// as Blob<float> or Blob<double> -- hence we do not define it for
// Blob<int> or Blob<unsigned int>.
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }
//更新 根据data_的head来更新,更新为data=-1*diff+data
template <typename Dtype>
void Blob<Dtype>::Update() {
// We will perform update based on where the data is located.
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
// perform computation on CPU
caffe_axpy<Dtype>(count_, Dtype(-),
static_cast<const Dtype*>(diff_->cpu_data()),
static_cast<Dtype*>(data_->mutable_cpu_data()));
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
// perform computation on GPU
caffe_gpu_axpy<Dtype>(count_, Dtype(-),
static_cast<const Dtype*>(diff_->gpu_data()),
static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
NO_GPU;
#endif
break;
default:
LOG(FATAL) << "Syncedmem not initialized.";
}
} template <> unsigned int Blob<unsigned int>::asum_data() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::asum_data() const {
NOT_IMPLEMENTED;
return ;
} template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
if (!data_) { return ; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
return caffe_cpu_asum(count_, cpu_data());
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
{
Dtype asum;
caffe_gpu_asum(count_, gpu_data(), &asum);
return asum;
}
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return ;
} template <> unsigned int Blob<unsigned int>::asum_diff() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::asum_diff() const {
NOT_IMPLEMENTED;
return ;
}
//计算data的L1范数
template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
if (!diff_) { return ; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
return caffe_cpu_asum(count_, cpu_diff());
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
{
Dtype asum;
caffe_gpu_asum(count_, gpu_diff(), &asum);
return asum;
}
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
}
return ;
} template <> unsigned int Blob<unsigned int>::sumsq_data() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::sumsq_data() const {
NOT_IMPLEMENTED;
return ;
}
//L2范数
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
Dtype sumsq;
const Dtype* data;
if (!data_) { return ; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
data = cpu_data();
sumsq = caffe_cpu_dot(count_, data, data);
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
data = gpu_data();
caffe_gpu_dot(count_, data, data, &sumsq);
#else
NO_GPU;
#endif
break;
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return sumsq;
} template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::sumsq_diff() const {
NOT_IMPLEMENTED;
return ;
} template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
Dtype sumsq;
const Dtype* diff;
if (!diff_) { return ; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
diff = cpu_diff();
sumsq = caffe_cpu_dot(count_, diff, diff);
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
diff = gpu_diff();
caffe_gpu_dot(count_, diff, diff, &sumsq);
break;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return sumsq;
} template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
NOT_IMPLEMENTED;
} template <> void Blob<int>::scale_data(int scale_factor) {
NOT_IMPLEMENTED;
}
//将data部分乘一个因子
template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
Dtype* data;
if (!data_) { return; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
data = mutable_cpu_data();
caffe_scal(count_, scale_factor, data);
return;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
data = mutable_gpu_data();
caffe_gpu_scal(count_, scale_factor, data);
return;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
} template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
NOT_IMPLEMENTED;
} template <> void Blob<int>::scale_diff(int scale_factor) {
NOT_IMPLEMENTED;
} template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
Dtype* diff;
if (!diff_) { return; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
diff = mutable_cpu_diff();
caffe_scal(count_, scale_factor, diff);
return;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
diff = mutable_gpu_diff();
caffe_gpu_scal(count_, scale_factor, diff);
return;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
}
}
//两个blob的shape是否一样
template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
if (other.has_num() || other.has_channels() ||
other.has_height() || other.has_width()) {//判断是否是旧的blob(为何能判断?)
// Using deprecated 4D Blob dimensions --
// shape is (num, channels, height, width).
// Note: we do not use the normal Blob::num(), Blob::channels(), etc.
// methods as these index from the beginning of the blob shape, where legacy
// parameter blobs were indexed from the end of the blob shape (e.g., bias
// Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
return shape_.size() <= &&
LegacyShape(-) == other.num() &&
LegacyShape(-) == other.channels() &&
LegacyShape(-) == other.height() &&
LegacyShape(-) == other.width();
}
//不是则复制判断
vector<int> other_shape(other.shape().dim_size());
for (int i = ; i < other.shape().dim_size(); ++i) {
other_shape[i] = other.shape().dim(i);
}
return shape_ == other_shape;
}
//复制diff和data
template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
if (source.count() != count_ || source.shape() != shape_) {
if (reshape) {
ReshapeLike(source);
} else {
LOG(FATAL) << "Trying to copy blobs of different sizes.";
}
}
switch (Caffe::mode()) {
case Caffe::GPU:
if (copy_diff) {
caffe_copy(count_, source.gpu_diff(),
static_cast<Dtype*>(diff_->mutable_gpu_data()));
} else {
caffe_copy(count_, source.gpu_data(),
static_cast<Dtype*>(data_->mutable_gpu_data()));
}
break;
case Caffe::CPU:
if (copy_diff) {
caffe_copy(count_, source.cpu_diff(),
static_cast<Dtype*>(diff_->mutable_cpu_data()));
} else {
caffe_copy(count_, source.cpu_data(),
static_cast<Dtype*>(data_->mutable_cpu_data()));
}
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
//
template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
if (reshape) {
vector<int> shape;
if (proto.has_num() || proto.has_channels() || //如果是旧的blob则直接转为新的blob中的数据
proto.has_height() || proto.has_width()) {
// Using deprecated 4D Blob dimensions --
// shape is (num, channels, height, width).
shape.resize();
shape[] = proto.num();
shape[] = proto.channels();
shape[] = proto.height();
shape[] = proto.width();
} else {
shape.resize(proto.shape().dim_size());
for (int i = ; i < proto.shape().dim_size(); ++i) {
shape[i] = proto.shape().dim(i);
}
}
Reshape(shape);
} else {
CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
}
// copy data复制data和diff
Dtype* data_vec = mutable_cpu_data();//获取当前数据的互斥指针
if (proto.double_data_size() > ) {
CHECK_EQ(count_, proto.double_data_size());
for (int i = ; i < count_; ++i) {
data_vec[i] = proto.double_data(i);
}
} else {
CHECK_EQ(count_, proto.data_size());
for (int i = ; i < count_; ++i) {
data_vec[i] = proto.data(i);
}
}
if (proto.double_diff_size() > ) {
CHECK_EQ(count_, proto.double_diff_size());
Dtype* diff_vec = mutable_cpu_diff();
for (int i = ; i < count_; ++i) {
diff_vec[i] = proto.double_diff(i);
}
} else if (proto.diff_size() > ) {
CHECK_EQ(count_, proto.diff_size());
Dtype* diff_vec = mutable_cpu_diff();
for (int i = ; i < count_; ++i) {
diff_vec[i] = proto.diff(i);
}
}
} template <>
void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
proto->clear_shape();
for (int i = ; i < shape_.size(); ++i) {
proto->mutable_shape()->add_dim(shape_[i]);
}
proto->clear_double_data();
proto->clear_double_diff();
const double* data_vec = cpu_data();
for (int i = ; i < count_; ++i) {
proto->add_double_data(data_vec[i]);
}
if (write_diff) {
const double* diff_vec = cpu_diff();
for (int i = ; i < count_; ++i) {
proto->add_double_diff(diff_vec[i]);
}
}
} template <>
void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
proto->clear_shape();
for (int i = ; i < shape_.size(); ++i) {
proto->mutable_shape()->add_dim(shape_[i]);
}
proto->clear_data();
proto->clear_diff();
const float* data_vec = cpu_data();
for (int i = ; i < count_; ++i) {
proto->add_data(data_vec[i]);
}
if (write_diff) {
const float* diff_vec = cpu_diff();
for (int i = ; i < count_; ++i) {
proto->add_diff(diff_vec[i]);
}
}
} INSTANTIATE_CLASS(Blob);
template class Blob<int>;
template class Blob<unsigned int>; } // namespace caffe
Blob:4个维度 n x c x h x w;
bottom[0] 、bottom[1]代表该层有几个输入。
bottom[0]->count(): 输入中,元素的总维数(个数)
bottom[0]->nums(): 输入中,块(block)的个数,该参数还对应batch_size,即同时输入了几张图片
c:是卷积核(filter)的个数,每个卷积核产生一个通道的输出;在输入层,c直接就是图像的通道数;
还有一个变量,dim;:每个块的维度(元素个数)
形象化:
| xxxxx | xxxxx | xxxxx | xxxxx | xxxxx | xxxxx | xxxxx | xxxxx |
上图,nums = 8, dim = 5, count = 5*8 =40;
参考:http://blog.csdn.net/qq_14975217/article/details/51524042
http://blog.csdn.net/xizero00/article/details/50886829
http://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html
关于常见的BLAS函数,参考:http://www.cnblogs.com/huashiyiqike/p/3886670.html
关于protobuf,参考:https://www.ibm.com/developerworks/cn/linux/l-cn-gpb/
Caffe学习系列(17): blob的更多相关文章
- Caffe学习系列(17):模型各层数据和参数可视化
cifar10的各层数据和参数可视化 .caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1p ...
- Caffe 学习系列
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe学习系列(22):caffe图形化操作工具digits运行实例
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...
- Caffe学习系列(21):caffe图形化操作工具digits的安装与运行
经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe学习系列——工具篇:神经网络模型结构可视化
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...
随机推荐
- Win2019 preview 版本的安装过程
1. 加入 windows insider 协议 登录自己的账号 同意 insder 协议. 然后 https://www.microsoft.com/en-us/software-download/ ...
- CentOS 安装 Harbor的简单过程(仅使用http 未使用https)
1. 下载离线安装包 在线安装 99% 会失败, 建议还是使用离线安装包 下载地址 https://github.com/vmware/harbor/releases 20180719 时最新版本的g ...
- func_get_args()在php71与php56的区别
func_get_args() 获取函数的所有参数,返回一个数组 官方:http://www.php.net/manual/en/function.func-get-args.php 但是此函数在ph ...
- App phonegap
云端打包 https://build.phonegap.com/apps phonegap PC端下载 https://www.phonegap.com/getstarted/ 移动端下载 https ...
- 一本通1656Combination
1656:Combination 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 原题来自:BZOJ 2982 LMZ 有 n 个不同的基友,他每天晚上要选 ...
- 选择提供器 - 选择监听器(selection provider-selection listener)模式
- spring MVC 统一异常处理(webapi和web分开处理)
转载: http://blog.csdn.net/m13321169565/article/details/7641978 http://blog.csdn.net/ethan_fu/article/ ...
- 平面最近点对(分治nlogn)
平面最近点对,是指给出平面上的n个点,寻找点对间的最小距离 首先可以对按照x为第一关键字排序,然后每次按照x进行分治,左边求出一个最短距离d1,右边也求出一个最短距离d2,那么取d=min(d1, d ...
- (转)Maven学习总结(六)——Maven与Eclipse整合
孤傲苍狼只为成功找方法,不为失败找借口! Maven学习总结(六)——Maven与Eclipse整合 一.安装Maven插件 下载下来的maven插件如下图所示:,插件存放的路径是:E:/MavenP ...
- 消除JQuery Mobile 列表样式右侧箭头
有时候我们看到JQM上面有一些呈现跟我们要的很像如下面这个Listview效果 程序代码如下: view sourceprint? 1.<ul data-role="listvie ...