Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

思路

最近看了很多关于gcd和mod的题目。

通过最近几道题目了解了很多=。=

首先有这么一个性质:如果a∈[1,n],b∈[1,m],那么gcd(a,b)|k的有(n/k)*(m/k)组。

那么令f[x]为gcd(a,b)==k的组数,f[k]=(n/k)*(m/k)-f[2k]-f[3k]-f[4k]……

对于这一题来说。。好像是并不可以过的。

那么就有别的性质:

如果a,b∈[1,n],gcd(a,b)==k的组数等价于a,b∈[1,n/k],gcd(a,b)==1的组数。

这就很好求了吧,就是1->n的phi值之和(欧拉函数)*2-1。

首先每组数必须要算两遍,比如(3,5)和(5,3),所以要*2。然后(1,1)不要算两遍,所以再-1。

然后就是如何求出1-n中所有的质数以及欧拉函数了。现场学习线性筛。。

其实我完全不理解啊。。先记住好了。。核心代码如下:

 phi[]=;memset(is_prime,true,sizeof(is_prime));
for(int i=;i<=n;i++){
if (is_prime[i]){
phi[i]=i-;
prime[++cnt]=i;
}
for(int j=;j<=cnt&&i*prime[j]<=n;j++){
is_prime[i*prime[j]]=false;
if (i%prime[j]!=) phi[i*prime[j]]=phi[i]*(prime[j]-);
else{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}

线性筛

应该没写错吧。。为了加强记忆默写的。。如果有问题就看下面的那个版本吧,那个是AC了的。

 #include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <list>
#include <vector>
#include <ctime>
#include <functional>
#define pritnf printf
#define scafn scanf
#define sacnf scanf
#define For(i,j,k) for(int i=(j);i<=(k);(i)++)
#define Clear(a) memset(a,0,sizeof(a))
using namespace std;
typedef unsigned int Uint;
const int INF=0x3fffffff;
///==============struct declaration============== ///==============var declaration=================
const int MAXN=;
int n,tot=,ans=;
int prime[MAXN];
long long phi[MAXN];
bool is_prime[MAXN];
///==============function declaration============
void Init();
///==============main code=======================
int main()
{
//#define FILE__
#ifdef FILE__
freopen("input","r",stdin);
freopen("output","w",stdout);
#endif
scanf("%d",&n);
Init();
for(int i=;i<=n;i++) phi[i]+=phi[i-];
long long ans=;
for(int i=;i<=tot;i++)
ans+=phi[n/prime[i]]*-;
printf("%lld\n",ans);
return ;
}
///================fuction code====================
void Init(){
memset(is_prime,true,sizeof(is_prime));phi[]=;
for(int i=;i<=n;i++){
if (is_prime[i]){
phi[i]=i-;
prime[++tot]=i;
}
for(int j=;j<=tot;j++){
if (i*prime[j]>n) break;
is_prime[i*prime[j]]=false;
if (i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}

BZOJ2818

不要问我那些性质是为什么。。我也布吉岛(╯‵□′)╯︵┻━┻

【河北省队互测】 gcd BZOJ 2818的更多相关文章

  1. GCD BZOJ2818 [省队互测] 数学

    题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 复制 4 ...

  2. 题解 P6271 [湖北省队互测2014]一个人的数论

    通过这道题学了伯努利数,写篇题解推一下 题目 先推一下式子 \[\sum_{i=1}^ni^d[gcd(i,n)=1] \] \[\sum_{i=1}^{n}i^d\sum_{k|i}\sum_{k| ...

  3. [bzoj3670][2014湖北省队互测week2]似乎在梦中见过的样子

    Description 已知一个字符串S,求它有多少个形如A+B+A的子串(len(A)>=k,len(B)>=1 ). Input 第一行一个字符串,第二行一个数 k. Output 仅 ...

  4. bug运输[辽宁2014年省队互测一]

    奇奇怪怪的题目,不知道他要我们干什么. 我们观察一波局势,发现答案最大不过5.因为如果答案是6或以上的话,我们就至少要2^(5*5)个5*5的方格. 仔细计算一波时间复杂度,再信仰一波,坚信暴力压正解 ...

  5. STOI补番队互测#2

    Round2轮到我出了>_<(目测总共10人参加 实际共七人) 具体情况: #1: KPM,360 #2:ccz181078,160 #3:child,150 可惜KPM没看到第一题样例里 ...

  6. BZOJ 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4443  Solved: 1960[Submit][Status][Discuss ...

  7. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  8. Bzoj 2818: Gcd(莫比乌斯反演)

    2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...

  9. BZOJ 2818

    2818:GCD Description 给定整数$N$,求$1\le x,y\le N$且$\gcd{x,y}$为素数的数对$(x,y)$有多少对. Input $N$ Output RT Samp ...

随机推荐

  1. C#进阶系列——WebApi 路由机制剖析:你准备好了吗?

    前言:从MVC到WebApi,路由机制一直是伴随着这些技术的一个重要组成部分. 它可以很简单:如果你仅仅只需要会用一些简单的路由,如/Home/Index,那么你只需要配置一个默认路由就能简单搞定: ...

  2. Spark MLlib - LFW

    val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first pri ...

  3. jQuery 常用速查

    jQuery 速查 基础 $("css 选择器") 选择元素,创建jquery对象 $("html字符串") 创建jquery对象 $(callback) $( ...

  4. 归一化方法 Normalization Method

    1. 概要 数据预处理在众多深度学习算法中都起着重要作用,实际情况中,将数据做归一化和白化处理后,很多算法能够发挥最佳效果.然而除非对这些算法有丰富的使用经验,否则预处理的精确参数并非显而易见. 2. ...

  5. 5G承载为什么需要三层到边缘

  6. js-读取复选框

    js: var obj = document.getElementsByName("yk"); var check_val = []; for(k in obj){ if(obj[ ...

  7. Sqlserver内置函数实现MD5

    16位: SELECT substring(sys.fn_sqlvarbasetostr(HashBytes('MD5', '需要加密字符串')),3,16) 32位 SELECT substring ...

  8. Android Studio JNI 开发简单案例

    转载:http://www.androidchina.net/5744.html 进程保活,热修复,硬件接入等等都需要底层的支持,而底层代码是 C .C++ 写的,那么在 Android 中怎么调用底 ...

  9. C#读取Excel,或者多个excel表,返回dataset

    把excel 表作为一个数据源进行读取 /// <summary> /// 读取Excel单个Sheet /// </summary> /// <param name=& ...

  10. POJ 2251 Dungeon Master(3D迷宫 bfs)

    传送门 Dungeon Master Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28416   Accepted: 11 ...