【LOJ】#2075. 「JSOI2016」位运算
题解
压的状态是一个二进制位,我们规定1到n的数字互不相同是从小到大,二进制位记录的是每一位和后一个数是否相等,第n位记录第n个数和原串是否相等,处理出50个转移矩阵然后相乘,再快速幂即可
代码
#include <bits/stdc++.h>
#define enter putchar('\n')
#define space putchar(' ')
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define MAXN 100005
#define mo 99994711
#define pb push_back
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,K;
char s[55];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
struct Matrix {
int r,c,f[(1 << 7) + 5][(1 << 7) + 5];
Matrix() {memset(f,0,sizeof(f));}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;c.r = a.r;c.c = b.c;
for(int i = 0 ; i <= a.r ; ++i) {
for(int j = 0 ; j <= b.c ; ++j) {
for(int k = 0 ; k <= b.r ; ++k) {
c.f[i][j] = inc(c.f[i][j],mul(a.f[i][k],b.f[k][j]));
}
}
}
return c;
}
}A,F,ans;
void fpow(Matrix &res,Matrix &x,int c) {
res = x;Matrix t = x;--c;
while(c) {
if(c & 1) res = res * t;
t = t * t;
c >>= 1;
}
}
int state[1005],tot;
void Solve() {
read(N);read(K);
scanf("%s",s + 1);
int L = strlen(s + 1);
for(int i = 0 ; i < (1 << N) ; ++i) {
int t = 0,tmp = i;
while(tmp) {t ^= (tmp & 1);tmp >>= 1;}
if(!t) state[++tot] = i;
}
A.r = A.c = F.r = F.c = (1 << N) - 1;
for(int i = 0 ; i <= A.r ; ++i) A.f[i][i] = 1;
for(int i = 1 ; i <= L ; ++i) {
memset(F.f,0,sizeof(F.f));
for(int S = 0 ; S < (1 << N) ; ++S) {
for(int j = 1 ; j <= tot ; ++j) {
int U = state[j] | ((s[i] - '0') << N),T = 0;
bool flag = 1;
for(int k = N ; k >= 1 ; --k) {
if((S >> (k - 1) & 1) && (U >> (k - 1) & 1) > (U >> k & 1)) {flag = 0;break;}
}
if(!flag) continue;
for(int k = N ; k >= 1 ; --k) {
int t = (S >> (k - 1) & 1) && ((U >> (k - 1) & 1) == (U >> k & 1));
T |= t << (k - 1);
}
F.f[S][T] = inc(F.f[S][T],1);
}
}
A = A * F;
}
fpow(ans,A,K);
out(ans.f[(1 << N) - 1][0]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【LOJ】#2075. 「JSOI2016」位运算的更多相关文章
- loj#2071. 「JSOI2016」最佳团体
题目链接 loj#2071. 「JSOI2016」最佳团体 题解 树形dp强行01分规 代码 #include<cstdio> #include<cstring> #inclu ...
- loj#2076. 「JSOI2016」炸弹攻击 模拟退火
目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的 ...
- [LOJ 2082] 「JSOI2016」炸弹攻击 2
[LOJ 2082] 「JSOI2016」炸弹攻击 2 链接 链接 题解 枚举发射源,将发射源当做原点,对敌人和激光塔极角排序. 由于敌人纵坐标均为正,而其它点均为负,因此每两个角度差在 \(\pi\ ...
- LOJ#2082. 「JSOI2016」炸弹攻击 2(计算几何+双指针)
题面 传送门 题解 我们枚举一下发射源,并把敌人和激光塔按极角排序,那么一组合法解就是两个极角之差不超过\(\pi\)且中间有敌人的三元组数,预处理一下前缀和然后用双指针就行了 //minamoto ...
- LOJ#2076. 「JSOI2016」炸弹攻击(模拟退火)
题面 传送门 题解 退火就好了 记得因为答案比较小,但是温度比较高,所以在算\(\exp\)的时候最好把相差的点数乘上一个常数来让选取更劣解的概率降低 话虽如此然而我自己打的退火答案永远是\(0\)- ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- loj#2665. 「NOI2013」树的计数
目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
随机推荐
- 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)
[BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...
- 【bzoj2434】 Noi2011—阿狸的打字机
http://www.lydsy.com/JudgeOnline/problem.php?id=2434 (题目链接) 题意 给出一个字符串,$P$表示输出,$B$表示退格.$m$组询问$(x,y)$ ...
- RabbitMQ的生产者和消费者
低级错误:启动程序的时候报错:socket close: 原因在配置文件中写的端口是:15672,应该是5672: client端通信口5672管理口15672server间内部通信口25672erl ...
- k8s如何管理Pod(rc、rs、deployment)
是豆荚,可以把容器想像成豆荚里的豆子,把一个或多个关系紧密的豆子包在一起就是豆荚(一个Pod).在k8s中我们不会直接操作容器,而是把容器包装成Pod再进行管理(关于Pod,大家可以参考第十期的分享“ ...
- C#访问和操作MYSQL数据库
这里介绍下比较简单的方式,引用MySql.Data.dll然后添加一个MySqlHelper类来对MySql数据库进行访问和操作. 1.将MySql.Data.dll引用到你的项目中 下载地址:MyS ...
- Hbuild开发App入门
http://ask.dcloud.net.cn/article/89建议必看网站 http://www.html5plus.org/doc/h5p.html API下载地址
- Scala进阶之路-高级数据类型之数组的使用
Scala进阶之路-高级数据类型之数组的使用 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数组的初始化方式 1>.长度不可变数组Array 注意:顾名思义,长度不可变数 ...
- Java基础-Java中的堆内存和离堆内存机制
Java基础-Java中的堆内存和离堆内存机制 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- 命令卸载ie11
管理员运行cmd. 执行命令FORFILES /P %WINDIR%\servicing\Packages /M Microsoft-Windows-InternetExplorer-*11.*.mu ...
- [整理]x=x++和x=++x
最近看java面试题,再次遇到x=x++,之前一直按照C语言中对自增运算符++的解释去理解.殊不知自己犯了严重的错误. (1)不同的语言的编译器,会导致相同的代码最终执行的结果不确定; (2)而且就算 ...