Description

给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出
 
get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次。

Input

第一行,一个数字N,表示序列长度。
第二行,N个数字,表示a1~aN
第三行,一个数字Q,表示询问个数。
第4~Q+3行,每行四个数字l1,r1,l2,r2,表示询问。
N,Q≤50000
N1≤ai≤N
1≤l1≤r1≤N
1≤l2≤r2≤N
注意:答案有可能超过int的最大值
 
                         -by bzoj
http://www.lydsy.com/JudgeOnline/problem.php?id=5016


一开始看错了题,以为是每次询问一个x,
然后想直接主席树;
然后很快发现题不会这么简单;
询问两个区间对应颜色出现次数相乘再求和;
两个区间,颜色;
想到离线
把一个有两个区间的询问变成两个有一个区间和一个前缀的询问作差,
然后按前缀端点排序,逐渐右移端点,维护更长的前缀,以更新询问,
这样每次前缀的端点右移时,前缀里只有一个颜色的数量增加了1,
相应的,以后要询问的区间只有这个颜色对答案的贡献增加了区间中这个颜色的个数,
然而这个颜色对答案的贡献取决于询问的区间中有多少这个颜色,
换言之取决于询问哪个区间,
一开始想用什么主席树之类的维护,死活不会,
然后一看时限3S想到分块暴力,
然后发现很科学;
然后就有了这个做法
把询问(l1,r1,l2,r2)拆成(l1,r1,pos=l2-1,-),(l1,r1,pos=r2,+)
表示
询问[l1,r1]与l2-1前缀的结果,并在原询问中减去它
询问[l1,r1]与r2前缀的结果,并在原询问中加上它
将拆成来的询问按pos从小到大排序,
按这样的顺序处理询问可以通过单向右移端点来依次维护所有询问的前缀
查询的时候,采用分块,
被整块查询的块可以直接使用一个块在当前前缀下的答案
维护方法是
在读入数列时对每个块建一个颜色桶MP[]
每右移前缀端点,使颜色col(x)个数在前缀中增加时,把每个块的答案都增加MP[col(x)]
被查询的散点,每个散点对答案的贡献是当前前缀中与这个散点颜色相同的点的个数
可以开个桶,在前缀变长时逐渐更新即可,
复杂度为$O((N+M)\sqrt{N})$
代码:
 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int sz,N,Q,num;
int a[];
LL MAP[][],inlineMAP[];
LL ANS[];
struct ss{
int L,R,pos,id;
LL flag;
}qrr[];
LL ans[];
bool cmp(ss a,ss b){
return a.pos<b.pos;
}
LL get(int ,int );
int main()
{
int i,j,k;
scanf("%d",&N);
sz=sqrt(N);
for(i=num=;i<=N;i+=sz,num++){
for(j=i;j<i+sz&&j<=N;j++){
scanf("%d",&a[j]);
MAP[num][a[j]]++;
}
}
num--;
scanf("%d",&Q);
for(i=;i<=Q;i++){
scanf("%d%d%d%d",&qrr[i].L,&qrr[i].R,&qrr[i].pos,&qrr[i+Q].pos);
qrr[i+Q].L=qrr[i].L,qrr[i+Q].R=qrr[i].R;
qrr[i+Q].id=qrr[i].id=i;
qrr[i].flag=-,qrr[i+Q].flag=;
qrr[i].pos--;
}
sort(qrr+,qrr+Q+Q+,cmp);
j=;
for(i=;i<=Q<<;i++){
while(j<qrr[i].pos){
j++;
inlineMAP[a[j]]++;
for(k=;k<=num;k++)
ANS[k]+=MAP[k][a[j]];
}
ans[qrr[i].id]+=qrr[i].flag*get(qrr[i].L,qrr[i].R);
}
for(i=;i<=Q;i++)
printf("%lld\n",ans[i]);
return ;
}
LL get(int L,int R){
LL ret=;
int i,j,k;
int l,r;
if(R-L+<=sz){
for(i=L;i<=R;i++)
ret+=inlineMAP[a[i]];
return ret;
}
for(i=j=;i<L;i+=sz,j++);
l=i-;
for(;i+sz<=R+&&i<=N;j++,i+=sz)
ret+=ANS[j];
r=i;
for(i=L;i<=l;i++)
ret+=inlineMAP[a[i]];
for(i=r;i<=R;i++)
ret+=inlineMAP[a[i]];
return ret;
}

或许有树套树的做法?

bzoj P5016[Snoi2017]一个简单的询问——solution的更多相关文章

  1. bzoj 5016: [Snoi2017]一个简单的询问

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...

  2. [SNOI2017]一个简单的询问

    [SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ...

  3. 【BZOJ5016】[Snoi2017]一个简单的询问 莫队

    [BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ...

  4. Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥

    传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...

  5. BZOJ5016:[SNOI2017]一个简单的询问(莫队)

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...

  6. [bzoj5016][Snoi2017]一个简单的询问

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出   get(l,r,x)表示计算区间[l,r]中 ...

  7. [SNOI2017]一个简单的询问【莫队+容斥原理】

    题目大意 给你一个数列,让你求两个区间内各个数出现次数的乘积的和. 分析 数据范围告诉我们可以用莫队过. 我并不知道什么曼哈顿什么乱七八糟的东西,但是我们可以用容斥原理将这个式子展开来. \[\sum ...

  8. 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法

    题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...

  9. bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5016 https://loj.ac/problem/2254 题解 原式是这样的 \[ \su ...

随机推荐

  1. Eclipse 导入本地 Git 项目

    File -->  Open Projects From File System 选择项目路径 Finish

  2. MySQL order by的实现

      1.使用索引的已有顺序 2.filesort算法 filesort算法的执行流程     filesort相关的参数 sort_buffer_size 算法排序缓冲区的大小,线程级缓存 max_l ...

  3. C++ Enum 转 Lua Table工具

    C++ Enum转Lua Table工具 观察C++ Enum结构 总结结构 enum GameMessage { //******* ///****************** GM_GAMESER ...

  4. SQLAlchemy的ORM

    表关系: 表之间的关系存在三种:一对一.一对多.多对多.而SQLAlchemy中的ORM也可以模拟这三种关系.因为一对一其实在SQLAlchemy中底层是通过一对多的方式模拟的,所以先来看下一对多的关 ...

  5. C#:WebBrowser控件的使用教程及相关问题整理

    推荐阅读: C#WebBrowser控件使用教程与技巧收集--苏飞收集 C# WebBrowser强制在本窗口打开,禁止在新窗口打开 C# WebBrowser禁止在新窗口打开,强制在本窗口打开(多种 ...

  6. python 字符串操作。。

    #字符串操作 以0开始,有负下标的使用0第一个元素,-1最后一个元素,-len第一个元 素,len-1最后一个元素 name= "qwe , erw, qwe "print(nam ...

  7. 全网最详细的启动zkfc进程时,出现INFO zookeeper.ClientCnxn: Opening socket connection to server***/192.168.80.151:2181. Will not attempt to authenticate using SASL (unknown error)解决办法(图文详解)

    不多说,直接上干货! at org.apache.zookeeper.ClientCnxnSocketNIO.doTransport(ClientCnxnSocketNIO.java:) at org ...

  8. 每一行代码都有记录—如何用git一步步探索项目的历史

    每一行代码都有一块被隐藏了的文档信息. 下面的代码片段不管是谁写的,其第4行因为某些原因要访问一个DOM结点的clientLeft属性,但却对结果不作任何处理.这十分的莫名其妙,你能告诉我他们为什么要 ...

  9. 【转载】表单中 Readonly 和 Disabled 的区别

    今天写代码,遇到表单提交的问题,某个字段在不同的情况下,要传递不同的值进行赋值,试过一些方法都有些问题,后来请教前端同学,使用 disabled 这个属性终于搞定了问题,查到一篇讲解 readonly ...

  10. IC 设计中DFT的Boundary Scan功能

    在很大规模的IC设计中,往往会有一些各种各样的bug出现,不论是在前期design的过程,还是在post silicon流片回来chip的flaw,都会导致chip的功能的失败,时钟频率无法达到期望频 ...