GIS理论(墨卡托投影、地理坐标系、地面分辨率、地图比例尺、Bing Maps Tile System)

  墨卡托投影(Mercator Projection),又名“等角正轴圆柱投影”,荷兰地图学家墨卡托(Mercator)在1569年拟定,假设地球被围在一个中空的圆柱里,其赤道与圆柱相接触,然后再假想地

球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅标准纬线为零度(即赤道)的“墨卡托投影”绘制出的世界地图。

一、墨卡托投影坐标系(Mercator Projection

  墨卡托投影以整个世界范围,赤道作为标准纬线,本初子午线作为中央经线,两者交点为坐标原点,向东向北为正,向西向南为负。南北极在地图的正下、上方,而东西方向处于地图的正右、左。

  由于Mercator Projection在两极附近是趋于无限值得,因此它并没完整展现了整个世界,地图上最高纬度是85.05度。为了简化计算,我们采用球形映射,而不是椭球体形状。虽然采用Mercator Projection只是为了方便展示地图,需要知道的是,这种映射会给Y轴方向带来0.33%的误差。

------------------------------------------------------------------------------------------------------------------------------------------

earthRadius =6378137

20037508.3427892 = earthRadius * (math.pi - 0)

85.05112877980659 = (math.atan(math.exp(aa / earthRadius))-math.pi/4)*2 * 180 / math.pi

image = 512 * 512

groundResolution(1 level)  = (20037508.3427892 * 2) / 512 = 78271.516964

screendpi = 96

mapScale = groundResolution * 96 / 0.0254 = 295829355.455

---------------------------------------------------------------------------------------------------------------------------------------

  由于赤道半径为6378137米,则赤道周长为2*PI*r = 20037508.3427892,因此X轴的取值范围:[-20037508.3427892,20037508.3427892]。当纬度φ接近两极,即90°时,Y值趋向于无穷。因此通常把Y轴的取值范围也限定在[-20037508.3427892,20037508.3427892]之间。因此在墨卡托投影坐标系(米)下的坐标范围是:最小为(-20037508.3427892, -20037508.3427892 )到最大 坐标为(20037508.3427892, 20037508.3427892)。

二、地理坐标系(Geographical coordinates

  地理经度的取值范围是[-180,180],纬度不可能到达90°,通过纬度取值范围为[20037508.3427892,20037508.3427892]反计算可得到纬度值为85.05112877980659。因此纬度取值范围是[-85.05112877980659,85.05112877980659]。因此,地理坐标系(经纬度)对应的范围是:最小地理坐标(-180,-85.05112877980659),最大地理坐标(180, 85.05112877980659)。

三、地面分辨率(Ground Resolution

  地面分辨率是以一个像素(pixel)代表的地面尺寸(米)。以微软Bing Maps为例,当Level为1时,图片大小为512*512(4个Tile),那么赤道空间分辨率为:赤道周长/512。其他纬度的空间分辨率则为 纬度圈长度/512,极端的北极则为0。Level为2时,赤道的空间分辨率为 赤道周长/1024,其他纬度为 纬度圈长度1024。很明显,Ground Resolution取决于两个参数,缩放级别Level和纬度latitude ,Level决定像素的多少,latitude决定地面距离的长短。

地面分辨率的公式为,单位:米/像素:

ground resolution = (cos(latitude * pi/180) * 2 * pi * 6378137 meters) / (256 * 2level pixels)

  最低地图放大级别(1级),地图是512 x 512像素。每下一个放大级别,地图的高度和宽度分别乘于2:2级是1024 x 1024像素,3级是2048 x 2048像素,4级是4096 x 4096像素,等等。通常而言,地图的宽度和高度可以由以下式子计算得到:map width = map height = 256 * 2^level pixels

四、地图比例尺(Map Scale

  地图比例尺是指测量相同目标时,地图上距离与实际距离的比例。通过地图分辨率在计算可知由Level可得到图片的像素大小,那么需要把其转换为以米为单位的距离,涉及到DPI(dot per inch),暂时可理解为类似的PPI(pixel per inch),即每英寸代表多少个像素。256 * 2level / DPI 即得到相应的英寸inch,再把英寸inch除以0.0254转换为米。实地距离仍旧是:cos(latitude * pi/180) * 2 * pi * 6378137 meters; 因此比例尺的公式为:

map scale = 256 * 2level / screen dpi / 0.0254 / (cos(latitude * pi/180) * 2 * pi * 6378137)

  比例尺= 1 : (cos(latitude * pi/180) * 2 * pi * 6378137 * screen dpi) / (256 * 2level * 0.0254)

  地面分辨率和地图比例尺之间的关系:

map scale = 1 : ground resolution * screen dpi / 0.0254 meters/inch

缩放级别

地图宽度、高度(像素)

地面分辨率(米/像素)

地图比例尺(以96dpi为例)

1

512

78,271.5170

1 : 295,829,355.45

2

1,024

39,135.7585

1 : 147,914,677.73

3

2,048

19,567.8792

1 : 73,957,338.86

4

4,096

9,783.9396

1 : 36,978,669.43

5

8,192

4,891.9698

1 : 18,489,334.72

6

16,384

2,445.9849

1 : 9,244,667.36

7

32,768

1,222.9925

1 : 4,622,333.68

8

65,536

611.4962

1 : 2,311,166.84

9

131,072

305.7481

1 : 1,155,583.42

10

262,144

152.8741

1 : 577,791.71

11

524,288

76.4370

1 : 288,895.85

12

1,048,576

38.2185

1 : 144,447.93

13

2,097,152

19.1093

1 : 72,223.96

14

4,194,304

9.5546

1 : 36,111.98

15

8,388,608

4.7773

1 : 18,055.99

16

16,777,216

2.3887

1 : 9,028.00

17

33,554,432

1.1943

1 : 4,514.00

18

67,108,864

0.5972

1 : 2,257.00

19

134,217,728

0.2986

1 : 1,128.50

20

268,435,456

0.1493

1 : 564.25

21

536,870,912

0.0746

1 : 282.12

22

1,073,741,824

0.0373

1 : 141.06

23

2,147,483,648

0.0187

1 : 70.53

五、Bing Maps像素坐标系和地图图片编码

  为了优化地图系统性能,提高地图下载和显示速度,所有地图都被分割成256 x 256像素大小的正方形小块。由于在每个放大级别下的像素数量都不一样,因此地图图片(Tile)的数量也不一样。每个tile都有一个XY坐标值,从左上角的(0, 0)至右下角的(2^level–1, 2^level–1)。例如在3级放大级别下,所有tile的坐标值范围为(0, 0)至(7, 7),如下图:

  已知一个像素的XY坐标值时,我们很容易得到这个像素所在的Tile的XY坐标值:

tileX = floor(pixelX / 256) tileY = floor(pixelY / 256)

  为了简化索引和存储地图图片,每个tile的二维XY值被转换成一维字串,即四叉树键值(quardtree key,简称quadkey)。每个quadkey独立对应某个放大级别下的一个tile,并且它可以被用作数据库中B-tree索引值。为了将坐标值转换成quadkey,需要将Y和X坐标二进制值交错组合,并转换成4进制值及对应的字符串。例如,假设在放大级别为3时,tile的XY坐标值为(3,5),quadkey计算如下:

tileX = 3 = 011(二进制)

tileY = 5 = 101(二进制)

quadkey = 100111(二进制) = 213(四进制) = “213”

Quadkey还有其他一些有意思的特性。第一,quadkey的长度等于该tile所对应的放大级别;第二,每个tile的quadkey的前几位和其父tile(上一放大级别所对应的tile)的quadkey相同,下图中,tile 2是tile 20至23的父tile,tile 13是tile 130至133的父级:

  最后,quadkey提供的一维索引值通常显示了两个tile在XY坐标系中的相似性。换句话说,两个相邻的tile对应的quadkey非常接近。这对于优化数据库的性能非常重要,因为相邻的tile通常被同时请求显示,因此可以将这些tile存放在相同的磁盘区域中,以减少磁盘的读取次数。

  下面是微软Bing Maps的TileSystem相关算法:

using System;

using System.Text;

namespace Microsoft.MapPoint

{

static class TileSystem

{

private const double EarthRadius = 6378137;

private const double MinLatitude = -85.05112878;

private const double MaxLatitude = 85.05112878;

private const double MinLongitude = -180;

private const double MaxLongitude = 180;

/// <summary>

/// Clips a number to the specified minimum and maximum values.

/// </summary>

/// <param name="n">The number to clip.</param>

/// <param name="minValue">Minimum allowable value.</param>

/// <param name="maxValue">Maximum allowable value.</param>

/// <returns>The clipped value.</returns>

private static double Clip(double n, double minValue, double maxValue)

{

return Math.Min(Math.Max(n, minValue), maxValue);

}

/// <summary>

///Determines the map width and height (in pixels) at a specified level

/// of detail.

/// </summary>

/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

/// to 23 (highest detail).</param>

/// <returns>The map width and height in pixels.</returns>

public static uint MapSize(intlevelOfDetail)

{

return (uint) 256 << levelOfDetail;

}

/// <summary>

///Determines the ground resolution (in meters per pixel) at a specified

/// latitude and level of detail.

/// </summary>

/// <param name="latitude">Latitude (in degrees) at which to measure the

/// ground resolution.</param>

/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

/// to 23 (highest detail).</param>

/// <returns>The ground resolution, in meters per pixel.</returns>

public static double GroundResolution(double latitude, int levelOfDetail)

{

latitude = Clip(latitude, MinLatitude, MaxLatitude);

return Math.Cos(latitude * Math.PI / 180) * 2 * Math.PI * EarthRadius / MapSize(levelOfDetail);

}

/// <summary>

///Determines the map scale at a specified latitude, level of detail,

/// and screen resolution.

/// </summary>

/// <param name="latitude">Latitude (in degrees) at which to measure the

/// map scale.</param>

/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

/// to 23 (highest detail).</param>

/// <param name="screenDpi">Resolution of the screen, in dots per inch.</param>

/// <returns>The map scale, expressed as the denominator N of the ratio 1 : N.</returns>

public static double MapScale(double latitude, int levelOfDetail, intscreenDpi)

{

return GroundResolution(latitude, levelOfDetail) * screenDpi / 0.0254;

}

/// <summary>

/// Converts a point from latitude/longitude WGS-84 coordinates (in degrees)

/// into pixel XY coordinates at a specified level of detail.

/// </summary>

/// <param name="latitude">Latitude of the point, in degrees.</param>

/// <param name="longitude">Longitude of the point, in degrees.</param>

/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

/// to 23 (highest detail).</param>

/// <param name="pixelX">Output parameter receiving the X coordinate in pixels.</param>

/// <param name="pixelY">Output parameter receiving the Y coordinate in pixels.</param>

public static void LatLongToPixelXY(double latitude, double longitude, intlevelOfDetail, out int pixelX, out int pixelY)

{

latitude = Clip(latitude, MinLatitude, MaxLatitude);

longitude = Clip(longitude, MinLongitude, MaxLongitude);

double x = (longitude + 180) / 360;

double sinLatitude = Math.Sin(latitude * Math.PI / 180);

double y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI);

uint mapSize = MapSize(levelOfDetail);

pixelX = (int) Clip(x * mapSize + 0.5, 0, mapSize - 1);

pixelY = (int) Clip(y * mapSize + 0.5, 0, mapSize - 1);

}

/// <summary>

/// Converts a pixel from pixel XY coordinates at a specified level of detail

/// into latitude/longitude WGS-84 coordinates (in degrees).

/// </summary>

/// <param name="pixelX">X coordinate of the point, in pixels.</param>

/// <param name="pixelY">Y coordinates of the point, in pixels.</param>

/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

/// to 23 (highest detail).</param>

/// <param name="latitude">Output parameter receiving the latitude in degrees.</param>

/// <param name="longitude">Output parameter receiving the longitude in degrees.</param>

public static void PixelXYToLatLong(int pixelX, int pixelY, intlevelOfDetail, out double latitude, out double longitude)

{

double mapSize = MapSize(levelOfDetail);

double x = (Clip(pixelX, 0, mapSize - 1) / mapSize) - 0.5;

double y = 0.5 - (Clip(pixelY, 0, mapSize - 1) / mapSize);

latitude = 90 - 360 * Math.Atan(Math.Exp(-y * 2 * Math.PI)) / Math.PI;

longitude = 360 * x;

}

/// <summary>

/// Converts pixel XY coordinates into tile XY coordinates of the tile containing

/// the specified pixel.

/// </summary>

/// <param name="pixelX">Pixel X coordinate.</param>

/// <param name="pixelY">Pixel Y coordinate.</param>

/// <param name="tileX">Output parameter receiving the tile X coordinate.</param>

/// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>

public static void PixelXYToTileXY(int pixelX, int pixelY, out int tileX, out int tileY)

{

tileX = pixelX / 256;

tileY = pixelY / 256;

}

/// <summary>

/// Converts tile XY coordinates into pixel XY coordinates of the upper-left pixel

/// of the specified tile.

/// </summary>

/// <param name="tileX">Tile X coordinate.</param>

/// <param name="tileY">Tile Y coordinate.</param>

/// <param name="pixelX">Output parameter receiving the pixel X coordinate.</param>

/// <param name="pixelY">Output parameter receiving the pixel Y coordinate.</param>

public static void TileXYToPixelXY(int tileX, int tileY, out int pixelX, out int pixelY)

{

pixelX = tileX * 256;

pixelY = tileY * 256;

}

/// <summary>

/// Converts tile XY coordinates into a QuadKey at a specified level of detail.

/// </summary>

/// <param name="tileX">Tile X coordinate.</param>

/// <param name="tileY">Tile Y coordinate.</param>

/// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)

/// to 23 (highest detail).</param>

/// <returns>A string containing the QuadKey.</returns>

public static string TileXYToQuadKey(int tileX, int tileY, intlevelOfDetail)

{

StringBuilder quadKey = newStringBuilder();

for (int i = levelOfDetail; i > 0; i--)

{

char digit = '0';

int mask = 1 << (i - 1);

if ((tileX & mask) != 0)

{

digit++;

}

if ((tileY & mask) != 0)

{

digit++;

digit++;

}

quadKey.Append(digit);

}

return quadKey.ToString();

}

/// <summary>

/// Converts a QuadKey into tile XY coordinates.

/// </summary>

/// <param name="quadKey">QuadKey of the tile.</param>

/// <param name="tileX">Output parameter receiving the tile X coordinate.</param>

/// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>

/// <param name="levelOfDetail">Output parameter receiving the level of detail.</param>

public static void QuadKeyToTileXY(string quadKey, out int tileX, out int tileY, out intlevelOfDetail)

{

tileX = tileY = 0;

levelOfDetail = quadKey.Length;

for (int i = levelOfDetail; i > 0; i--)

{

int mask = 1 << (i - 1);

switch (quadKey[levelOfDetail - i])

{

case '0':

break;

case '1':

tileX |= mask;

break;

case '2':

tileY |= mask;

break;

case '3':

tileX |= mask;

tileY |= mask;

break;

default:

throw new ArgumentException("Invalid QuadKey digit sequence.");

}

}

}

}

}

--------------------------------------------------------------------------------------------------------------------------------------------------------

当我们在用arcgis server 构建切片时,我们会发现在缓存生成的conf.xml中有这样的片段:

在上述片段中<LODInfo>代表了每一级切片的信息,<LevelID>代表切片的级数。

在这里,<Scale>代表比例尺。比例尺是表示图上距离比实地距离缩小的程度,也叫缩尺。公式为:比例尺=图上距离/实地距离。用数字的比例式或分数式表示比例尺的大小。例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。

<Resolution>,代表分辨率。Resolution 的实际含义代表当前地图范围内,1像素代表多少地图单位(X地图单位/像素),地图单位取决于数据本身的空间参考。

当我们在进行Web API的开发时,经常会碰到根据Resolution来缩放地图的情况。但是实际需求中我们更需要根据Scale来缩放,因此就涉及到Scale和Resolution的转换。

Resolution和Scale的转换算法:

Resolution跟dpi有关,跟地图的单位有关。(dpi代表每英寸的像素数)

Resolution和Scale的转换算法

举例:

案例一:如果地图的坐标单位是米, dpi为96

1英寸= 2.54厘米;

1英寸=96像素;

最终换算的单位是米;

如果当前地图比例尺为1: 125000000,则代表图上1米实地125000000米;

米和像素间的换算公式:

1英寸=0.0254米=96像素

1像素=0.0254/96 米

则根据1:125000000比例尺,图上1像素代表实地距离是125000000*0.0254/96 = 33072.9166666667米。我们这个换算结果和切片的结果略微有0.07米的误差。这个误差产生的原因是英寸换算厘米的参数决定的,server使用的换算参数1英寸约等于0.0254000508米。

案例二:如果地理坐标系是wgs84,地图的单位是度,dpi为96

Server中度和米之间的换算参数:

1度约等于 111194.872221777米

接下来就需要进行度和像素间的换算:

当比例尺为1:64000000米时,相当于1像素 = 64000000*0.0254000508/96 = 16933.3672米

再将米转换为度 16933.3672/111194.872221777 = 0.1522855043731385度

因此当地图单位为度时,近似计算在1:64000000 对应的Resolution为0.1522855043731385度

验证结果:

-----------------------------------------------------------------------------------------------------------------------

double resolution = scale * 0.0254000508/96/111194.872221777;

墨卡托投影、地理坐标系、地面分辨率、地图比例尺、Bing Maps Tile System的更多相关文章

  1. [转]Bing Maps Tile System 学习

    原文链接:Bing Maps Tile System 学习

  2. GIS理论(墨卡托投影、地理坐标系、地面分辨率、地图比例尺、Bing Maps Tile System)

    [注]原文 http://www.cnblogs.com/beniao/archive/2010/04/18/1714544.html 墨卡托投影(Mercator Projection),又名&qu ...

  3. 【Silverlight】Bing Maps学习系列(七):使用Bing Maps的图片系统(Tile System)

    [Silverlight]Bing Maps学习系列(七):使用Bing Maps的图片系统(Tile System) 目前包括微软必应地图在内的几乎所有在线电子地图(如:Google Maps等)都 ...

  4. Bing Maps进阶系列九:使用MapCruncher进行地图切片并集成进Bing Maps

    Bing Maps进阶系列九:使用MapCruncher进行地图切片并集成进Bing Maps 在Bing Maps开发中,由于各种应用功能的不同,更多的时候用户可能需要将自己的一部分图片数据作为地图 ...

  5. 【Silverlight】Bing Maps学习系列(八):使用Bing Maps Silverlight Control加载自己部署的Google Maps

    [Silverlight]Bing Maps学习系列(八):使用Bing Maps Silverlight Control加载自己部署的Google Maps 上个月微软必应地图(Bing Maps) ...

  6. Bing Maps进阶系列八:在Bing Maps中集成OpenStreetMap地图

    Bing Maps进阶系列八:在Bing Maps中集成OpenStreetMap地图 OSM(OpenStreetMap-开放街道地图)服务就是一种发布自己地图数据图片为服务的一种实现类型,开放街道 ...

  7. Bing Maps进阶系列三:使用地图图像服务(ImageryService)

    Bing Maps进阶系列三:使用地图图像服务(ImageryService) 地图图像服务(ImageryService)提供了根据地理位置(经度和纬度)坐标和地图的缩放级别解析出对应于地图图片系统 ...

  8. Windows 10 新特性 -- Bing Maps 3D地图开发入门(一)

    本文主要内容是讲述如何创建基于 Windows Universal App 的Windows 10 3D地图应用,涉及的Windows 10新特性包括 Bing Maps 控件.Compiled da ...

  9. SQL Server 2008空间数据应用系列十二:Bing Maps中呈现GeoRSS订阅的空间数据

    原文:SQL Server 2008空间数据应用系列十二:Bing Maps中呈现GeoRSS订阅的空间数据 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft SQL Se ...

随机推荐

  1. How to resize or create a thumbnail image from file stream on UWP

    最近在搞Ocr相关的windows universal app, 用到了一些图像处理相关的知识. 涉及到了BitmapDecoder/BitmapEncoder/IRandomAccessStream ...

  2. 解决当FORM的ENCTYPE="multipart/form-data" 时request.getParameter()获取不到值的方法

    部分转载于: http://blog.csdn.net/georgejin/article/details/1706647 http://www.cnblogs.com/loveyunk/p/6089 ...

  3. Quartz.NET基础知识概述

    Quartz.NET是什么 由于我现在使用的Quartz.NET2.2版本,相对2.x变化不大,主要是相对于1.x更新了很多东西,如下基础知识摘录网络. Quartz.NET是一个开源的作业调度框架, ...

  4. 使用Nagios打造专业的业务状态监控

    想必各个公司都有部署zabbix之类的监控系统来监控服务器的资源使用情况.各服务的运行状态,是否这种监控就足够了呢?有没有遇到监控系统一切正常确发现项目无法正常对外提供服务的情况呢?本篇文章聊聊我们如 ...

  5. EventProcessor与WorkPool用法--可处理多消费者

    单一的生产者,消费者有多个,使用WorkerPool来管理多个消费者: RingBuffer在生产Sequencer中记录一个cursor,追踪生产者生产到的最新位置,通过WorkSequence和s ...

  6. canvas实现涂鸦板

    实现思路:监听鼠标按下.移动.松开事件,将鼠标按下的值赋值给moveTo的x和y值,作为起始位置.在移动事件中,将鼠标距离可视区x和y值赋给lineTo,再将路径闭合.以下是具体的代码 <!DO ...

  7. solr(四) : springboot 整合 solr

    前言: solr服务器搭起来, 数据导入之后, 就该应用到项目中去了. 那在项目中, 该怎么整合和应用solr呢? 接下来, 就来整合和应用solr 一. 整合 1. 引入jar包 <prope ...

  8. WPF ViewBox中的TextBlock自适应

    想让 TextBlock即换行又能自动根据内容进行缩放,说到自动缩放,当然是ViewBox控件了,而TextBlock有TextWrapping属性控制换行, 所以在ViewBox中套用一个TextB ...

  9. 合并两个数组并去重(ES5和ES6两种方式实现)

    合并两个数组并去重(ES5和ES6两种方式实现) ES6实现方式 let arr1 = [1, 1, 2, 3, 6, 9, 5, 5, 4] let arr2 = [1, 2, 5, 4, 9, 7 ...

  10. FFmpeg简易播放器的实现-音频播放

    本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10068490.html 基于FFmpeg和SDL实现的简易视频播放器,主要分为读取视频文 ...