OpenCASCADE Curve Length Calculation
OpenCASCADE Curve Length Calculation
Abstract. The natural parametric equations of a curve are parametric equations that represent the curve in terms of a coordinate-independent parameter, generally arc length s, instead of an arbitray variable like t or u. According to the natural equations, the curve length is the integration of the curve parametric equation’s derivation. So the core algorithm for curve length calculation is the numerical integration method. OpenCASCADE use Gauss-Legendre to calculate the integration for single variable and multiple variables. Because of curve in OpenCASCADE is single variable function, so can use the Gauss-Legendre to calculate the arc length for the curve.
Key Words. OpenCASCADE, The Gauss-Legendre Integration, Parametric Curve,
The Natural Parametric Equations, Arc Length,
1. Introduction
对于同一条曲线,选择的参数不同其表达形式也不尽相同。而曲线自身的弧长是曲线本身的不变量,它与坐标系的选择无关,因此取曲线的弧长作为参数来研究曲线具有非常重要的意义。以曲线弧长作为曲线方程的参数,这样的方程称为曲线的自然参数方程。由曲线的自然参数方程可知曲线的弧长是曲线参数方程导数的积分。所以计算曲线弧长的核心算法成了计算函数的积分了。
OpenCASCADE中数学计算库TKMath中有一种高精度计算积分的算法Gauss-Legendre积分法,可对单变量和多变量的函数进行积分计算。由于OpenCASCADE中曲线是单变量的参数方程,所以可以用Gauss-Legendre来计算积分,进而得到曲线的弧长。如下图所示:
Figure 1.1 Length of Curve
本文对曲线的自然参数方程的概念进行说明,并简要介绍Gauss-Legendre算法及其在OpenCASCADE中的应用,即求曲线的弧长。
2. The Natural Parametric Equations
对于同一曲线若选择的参数不同,则其表达式亦不同,故用坐标系讨论曲线时,具有人为的性质,而曲线自身的弧长则曲线的不变量,它与坐标系的选取无关。因此,我们取曲线自身的弧长作为参数来研究曲线的内在性质。无论是理论探索还是实用研究,弧长参数化都有很重要的意义。
给定空间曲线r,在其上任取一点P0(x0, y0, z0)作为计算弧长的起点。应用弧长积分公式,即可计算该曲线上任意点P(x,y,z)到P0之间的弧长。由此,曲线上点的位置与该点处的弧长是一一对应的,如下图所示:
Figure 2.1 Arc length parameterization
即曲线上点的坐标是以弧长为参数的函数:
由其矢量方程可知,曲线是弧长为参数的矢函数,我们将其称为弧长参数化(Arc length parameterization)。弧长称为自然参数(Natural Parameter),曲线方程称为自然参数方程(Natural Parametric Equations)。现讨论曲线的自然参数方程与参数方程的联系:已知曲线的矢量方程为:
则弧长的微分和积分公式分别为:
s(u)即为与参数u0和u1对应的两点P0和P之间的弧长。弧长参数化是一类重要的概念,但是如果用上式来计算弧长比较繁琐,可以通过累加弦长方法来近似计算。
给定曲线:
令是参数轴上的一个等距分划;又令为曲线上与参数ui对应的点列,则可用下式计算弦长:
Figure 2.2 Parametric Curve
其中将参数轴等分越多,则求得的曲线的弧长越准确。
3. The Gauss-Legendre Integration
上述累加弦长的计算方法应该是Newton-Cotes积分计算法,Newton-Cotes就是将积分区间等分,并取分点为求积节点。容易看出当积分区间较大时,直接使用Newton-Cotes公式所得积分近似值的精度是很难保证的。
关于积分的数值算法有很多,其中Gauss-Legendre求积公式具有计算工作量小,所得近似值精确度高等优点,是一种高精度的求积公式。形式如下所示的求积公式:
代数精度达到了2n+1,则称它为高斯型求积公式,并称相应的求积节点x0, x1, ... xn为高斯点(Gauss Point)。Ak为求积系数。
OpenCASCADE的核心模块的数学库TKMath中有Gauss-Legendre求积算法,可用来对单变量和多变量的函数进行积分计算,对应的类分别为:math_GaussSingleIntegration和math_GaussMultipleIntegration。计算所需的高斯点及系数通过查表的方式取得,数据以数组的形式在文件math.cxx中列举出,如下图所示:
Figure 3.1 Gauss Point for Gauss-Legendre Integration
Gauss-Legendre积分用处之一就是根据曲线的自然参数方程计算曲线的弧长,代码实现如下所示:
//=====================================================================
//function : Length
//purpose : 3d with parameters
//===================================================================== Standard_Real CPnts_AbscissaPoint::Length(const Adaptor3d_Curve& C,
const Standard_Real U1,
const Standard_Real U2)
{
CPnts_MyGaussFunction FG;
//POP pout WNT
CPnts_RealFunction rf = f3d;
FG.Init(rf,(Standard_Address)&C);
// FG.Init(f3d,(Standard_Address)&C);
math_GaussSingleIntegration TheLength(FG, U1, U2, order(C));
if (!TheLength.IsDone()) {
Standard_ConstructionError::Raise();
}
return Abs(TheLength.Value());
}
根据上述求曲线弧长的代码可知,只需要给定曲线及其求积区间,即可计算出此区间内曲线的弧长。因为采用直接求积计算,所得曲线的弧长值的精度还是很高的。
高斯型求积公式是一种高精度的求积公式。在求积节点数相同,即计算工作量相近的情况下,利用高斯型求积公式往往可以获得准确程序较高的积分近似值。但是,它必须在不等距的节点上计算被积函数的值,而且当节点数改变时,所用数据都要重新查表计算。
4. Conclusion
曲线自身的弧长是曲线本身的不变量,它与坐标系的选择无关,因此取曲线的弧长作为参数来研究曲线具有非常重要的意义。以曲线弧长作为曲线方程的参数,这样的方程称为曲线的自然参数方程。由曲线的自然参数方程可知曲线的弧长是曲线参数方程导数的积分。所以计算曲线弧长的核心算法成了计算函数的积分了。
在《计算方法》、《数值分析》等教材中都有关于求积分的算法,在OpenCASCADE中实现了Gauss-Legendre求积算法。Gauss-Legendre求积算法是一种高精度的求积方法。所以根据曲线的自然参数方程可知曲线弧长就是对曲线参数方程导数的求积分。所以使用高斯求积法可以得到曲线弧长较精确值。
对数值积分的具体算法感兴趣的朋友,可以参考《计算方法》、《数值分析》、《数值计算》等相关书籍。
5. References
1. 朱心雄. 自由曲线曲面造型技术. 科学出版社. 2008
2. 王仁宏, 李崇君, 朱春钢. 计算几何教程. 科学出版社. 2008
3. 易大义, 沈云宝, 李有法. 计算方法. 浙江大学出版社. 2002
4. 易大义, 陈道琦. 数值分析引论. 浙江大学出版社. 1998
5. http://mathworld.wolfram.com/NaturalParametricEquations.html
6. http://mathworld.wolfram.com/Legendre-GaussQuadrature.html
7. http://en.wikipedia.org/wiki/Gaussian_quadrature
8. http://pomax.github.io/bezierinfo/legendre-gauss.html
PDF Version: OpenCASCADE Curve Length Calculation
OpenCASCADE Curve Length Calculation的更多相关文章
- OPEN CASCADE Curve Continuity
OPEN CASCADE Curve Continuity eryar@163.com Abstract. 设计一条复杂曲线时,出于设计和制造上的考虑,常常通过多段曲线组合而成,这就需要解决曲线段之间 ...
- OpenCASCADE 参数曲线曲面面积
OpenCASCADE 参数曲线曲面面积 eryar@163.com Abstract. 本文介绍了参数曲面的第一基本公式,并应用曲面的第一基本公式,结合OpenCASCADE中计算多重积分的类,对任 ...
- OpenCASCADE 参数曲面面积
OpenCASCADE 参数曲面面积 eryar@163.com Abstract. 本文介绍了参数曲面的第一基本公式,并应用曲面的第一基本公式,结合OpenCASCADE中计算多重积分的类,对任意参 ...
- Topology and Geometry in OpenCascade-Adapters
Topology and Geometry in OpenCascade-Adapters eryar@163.com 摘要Abstract:本文简要介绍了适配器模式(adapter pattern) ...
- 移植UE4的Spline与SplineMesh组件到Unity5
一个月前,想开始看下UE4的源码,刚开始以为有Ogre1.9与Ogre2.1源码的基础 ,应该还容易理解,把源码下起后,发现我还是想的太简单了,UE4的代码量对比Ogre应该多了一个量级,毕竟Ogre ...
- 用ESP8266+android,制作自己的WIFI小车
整体思路ESP8266作为TCP服务器,,手机作为TCP客户端,自己使用Lua直接做到了芯片里面,省了单片机,,节约成本,其实本来就是个单片机(感觉Lua开发8266真的很好,甩AT指令好几条街,,而 ...
- 用ESP8266+android,制作自己的WIFI小车(Android 软件)
先说一下这篇文章里面的内容:TCP 客户端, 自定义对话框, 自定义按钮, ProgressBar竖直显示, 重力感应传感器,手机返回键新开启界面的问题(返回上次的界面),数据保存 软件的通信是配合 ...
- [LeetCode] Maximum Width of Binary Tree 二叉树的最大宽度
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tre ...
- [Swift]LeetCode662. 二叉树最大宽度 | Maximum Width of Binary Tree
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tre ...
随机推荐
- U-Boot Driver Model领域模型设计
需求分析 在2014年以前,uboot没有一种类似于linux kernel的设备驱动模型,随着uboot支持的设备越来越多,其一直受到如下问题困扰: 设备初始化流程都独立实现,而且为了集成到系统,需 ...
- 【Linux】Too many open files
ZA 的BOSS 最近出现Too many open files 异常,这个异常一般是由于打开文件数过多引起, 最常见原因是某些连接一致未关闭 记录一些排查用到的指令 查看每个用户最大允许打开文件数量 ...
- jmobile学习之路 ----检测屏幕宽度
<script type="text/javascript"> window.onresize = function(){ var myh1 = document.ge ...
- 踏上Salesforce的学习之路(一)
相信通过前面的学习,大家已经拥有了一个属于自己的Salesforce开发者账号,下面,我们将用这个账号正式踏上Salesforce的学习之路. 首先,点击网址:https://developer.sa ...
- .net 4.0 ValidateRequest="false" 无效
昨天安装了VisualStudio 2010 Ultimate,今天把最近的一个项目升级到了4.0下,结果跑了一下,发现关于页面启用 ValidateRequest="false" ...
- 网络问卷调查js实现代码
昨天一个同行妹纸写了一个网络问卷调查的效果,但是有bug,于是就来问我该如何解决这个bug.经过我的分析,bug主要还是出在复选框的那部分,经过修改,bug问题解决,现在贴出如下代码,仅供大家参考: ...
- python使用总结
近来公司的测试部门要我们开发,按他们给我测试案例,写vba脚本,方便他们做自动化测试,老大把这事交给了我做.之前没写过vba,很多API都不会用,边写边谷歌,写得很慢. 我记得测试第一次做的是打开关闭 ...
- AJax登录。。转
AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. AJAX 是一种用于创建快速 ...
- HDU(1285)—确定比赛名次
/*最近都在复习期末了...好久没做题,都快没智商了*/ 有N个比赛队(1<=N<=500),编号依次为1,2,3,....,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后 ...
- nodejs与v8引擎
Motivation JavaScript 是一款拥有「自动垃圾回收」功能的编程语言. 市面上具有这样功能的语言,一般都是拥有相对应的虚拟机的,像 Java的JVM ,C#的CLR ,PHP的Zend ...