CF993E Nikita and Order Statistics 多项式卷积 快速傅里叶变换
题意:
给你一个数组a1~an,对于k=0~n,求出有多少个数组上的区间满足:区间内恰好有k个数比x小。x为一个给定的数。n<=10^5。值域没有意义。
分析:
大神们都说这道题是一个套路题,真是长见识%%%。
首先我们可以将题面转化,因为x是预先给出的,所以我们可以对其进行预处理,将数列中小于x的数都设为1,其他都为0,然后求一个前缀和,另前缀和数组为s[i]我们开一个数组v[i],记录在前缀和数组中数值i出现的次数。
然后我们可以得到这样一个式子
(据说看到这个式子就是套路了)
然后我们对这个式子进行一个转化。
转化:
之后,我们就可以修改上面的式子,变成这样,
有些经验的选手可以看得出,这个形式就是一个卷积的形式。
所以我们就直接把v数组和t数组看成多项式,用fft做一遍卷积,之后n+k次项的系数就是ans_k
k=0时需要特殊处理一下,要去除空串的影响,并且当k=0是,由于i和j的顺序问题,所以每种情况都统计了两次,最后要除以2。
代码:
#include<bits/stdc++.h>
#include<complex>
#define db double
#define ll long long
#define cp complex<db>
using namespace std;
const int N=;
const db pi=acos(-);
int m,l,r[N],cnt[N],s[N],x;
cp a[N],b[N],omg[N],inv[N];ll n,ans[N];
void init(){
for(int i=;i<n;i++)
omg[i]=cp(cos(*pi*i/n),sin(*pi*i/n)),
inv[i]=conj(omg[i]);
} void fft(cp *a,cp *tmp){
int lm=;while((<<lm)<n) lm++;
for(int i=;i<n;i++){int t=;
for(int j=;j<lm;j++)
if((i>>j)&) t|=(<<(lm-j-));
if(i<t) swap(a[i],a[t]);
} for(int l=;l<=n;l*=){
int m=l/;
for(cp *p=a;p!=a+n;p+=l)
for(int i=;i<m;i++){
cp t=tmp[n/l*i]*p[i+m];
p[i+m]=p[i]-t;p[i]+=t;
}
} return ;
} int main(){
scanf("%lld%d",&n,&x);cnt[]=;
for(int i=,y;i<=n;i++)
scanf("%d",&y),s[i]=s[i-]+(y<x),cnt[s[i]]++;
for(int i=;i<=n;i++) a[i]=b[n-i]=cnt[i];
int q=n;n=;while(n<=(q<<)) n<<=;
init();fft(a,omg);fft(b,omg);
for(int i=;i<n;i++) a[i]*=b[i];
fft(a,inv);
ans[]=(ll)((a[q].real()/n+0.5)-1ll*q-)>>1ll;
printf("%lld",ans[]);
for(int i=;i<=q;i++)
ans[i]=(ll)floor(a[q+i].real()/n+0.5),
printf(" %lld",ans[i]);puts("");return ;
}
fft 快速傅里叶变换
CF993E Nikita and Order Statistics 多项式卷积 快速傅里叶变换的更多相关文章
- CF993E Nikita and Order Statistics 【fft】
题目链接 CF993E 题解 我们记小于\(x\)的位置为\(1\),否则为\(0\) 区间由端点决定,转为两点前缀和相减 我们统计出每一种前缀和个数,记为\(A[i]\)表示值为\(i\)的位置出现 ...
- CF993E Nikita and Order Statistics
小于x的赋值为1,否则为0 区间等于k的个数 求0~n连续的n+1个k? N<=1e5? FFT! 考虑卷积建模:用下标相加实现转移到位,数值相乘类比乘法原理! 法一: 分治,然后FFT没了 法 ...
- CF993E:Nikita and Order Statistics(FFT)
Description 给你一个数组 $a_{1 \sim n}$,对于 $k = 0 \sim n$,求出有多少个数组上的区间满足:区间内恰好有 $k$ 个数比 $x$ 小.$x$ 为一个给定的数. ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- Codeforces 993E Nikita and Order Statistics [FFT]
洛谷 Codeforces 思路 一开始想偏想到了DP,后来发现我SB了-- 考虑每个\(a_i<x\)的\(i\),记录它前一个和后一个到它的距离为\(L_i,R_i\),那么就有 \[ an ...
- [Codeforces 993E]Nikita and Order Statistics
Description 题库链接 给你一个长度为 \(n\) 的序列 \(A\) ,和一个数 \(x\) ,对于每个 \(i= 0\sim n\) ,求有多少个非空子区间满足恰好有 \(i\) 个数 ...
- 多项式相乘快速算法原理及相应C代码实现---用到fft
最近认真研究了一下算法导论里面的多项式乘法的快速计算问题,主要是用到了FFT,自己也实现了一下,总结如下. 1.多项式乘法 两个多项式相乘即为多项式乘法,例如:3*x^7+4*x^5+1*x^2+5与 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
随机推荐
- VMware安装Centos 7,网络连接问题以及解决方案
转自: https://www.cnblogs.com/owaowa/p/6123902.html 在这里表示万分感谢 在使用CentOS虚拟机后,出现了无法上网的情况,使用主机ping虚机地址可以p ...
- SSM报错:No converter found for return value of type: class java.util.ArrayList at org.springframework.web.servlet.mvc.method.annotation.AbstractMessageConverterMethodProcessor.writeWithMessageConverter
我使用的是SSM框架,是在编写测试RESTFUL接口的时候出现, @RequestMapping(value = "/selectAll", method = RequestMet ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) A
Description Bear Limak wants to become the largest of bears, or at least to become larger than his b ...
- 第03课 在VMwave 14.0 上配置企业级CentOS 6.6操作系统
第一部分:配置虚拟硬件 1.1 启动VMware,选择文件-->新建虚拟机(Ctrl + N),创建一个虚拟机. (VMware的安装过程较为简单,可自行百度.) 1.2 此时,出现新建虚拟机向 ...
- shell随机数生成
shell中的RANDOM变量: echo $RANDOM 加上系统时间更加随机:echo `date +%N`$RANDOM | md5sum |cut -c1-8 通过/dev/urandom ...
- C#基础学习4
流程控制!
- Angularjs中表格的增删改查
在一个管理系统中,不外乎都是增删改查.现在比如有个表格,我想修改当前行的数据,如下图所示 一点击修改的时候,当前页面我需要修改的数据,变成能修改的样式,点击保存能保存当前修改的数据,如下图所示 需要引 ...
- 配置组件的 props
组件是相互独立.可复用的单元,一个组件可能在不同地方被用到.但是在不同的场景下对这个组件的需求可能会根据情况有所不同,例如一个点赞按钮组件,在我这里需要它显示的文本是“点赞”和“取消”,当别的同事拿过 ...
- AngularJS 表单验证手机号(非必填)
代码: <form ng-app="myApp" ng-controller="validateCtrl" name="myForm" ...
- 【学习笔记】深入理解js原型和闭包(3)——prototype原型
既typeof之后的另一位老朋友! prototype也是我们的老朋友,即使不了解的人,也应该都听过它的大名.如果它还是您的新朋友,我估计您也是javascript的新朋友. 在咱们的第一节(深入理解 ...